Metamath Proof Explorer


Theorem isupwlk

Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Hypotheses upwlksfval.v V = Vtx G
upwlksfval.i I = iEdg G
Assertion isupwlk G W F U P Z F UPWalks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1

Proof

Step Hyp Ref Expression
1 upwlksfval.v V = Vtx G
2 upwlksfval.i I = iEdg G
3 df-br F UPWalks G P F P UPWalks G
4 1 2 upwlksfval G W UPWalks G = f p | f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1
5 4 3ad2ant1 G W F U P Z UPWalks G = f p | f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1
6 5 eleq2d G W F U P Z F P UPWalks G F P f p | f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1
7 3 6 syl5bb G W F U P Z F UPWalks G P F P f p | f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1
8 eleq1 f = F f Word dom I F Word dom I
9 8 adantr f = F p = P f Word dom I F Word dom I
10 simpr f = F p = P p = P
11 fveq2 f = F f = F
12 11 oveq2d f = F 0 f = 0 F
13 12 adantr f = F p = P 0 f = 0 F
14 10 13 feq12d f = F p = P p : 0 f V P : 0 F V
15 11 oveq2d f = F 0 ..^ f = 0 ..^ F
16 15 adantr f = F p = P 0 ..^ f = 0 ..^ F
17 fveq1 f = F f k = F k
18 17 fveq2d f = F I f k = I F k
19 fveq1 p = P p k = P k
20 fveq1 p = P p k + 1 = P k + 1
21 19 20 preq12d p = P p k p k + 1 = P k P k + 1
22 18 21 eqeqan12d f = F p = P I f k = p k p k + 1 I F k = P k P k + 1
23 16 22 raleqbidv f = F p = P k 0 ..^ f I f k = p k p k + 1 k 0 ..^ F I F k = P k P k + 1
24 9 14 23 3anbi123d f = F p = P f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
25 24 opelopabga F U P Z F P f p | f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
26 25 3adant1 G W F U P Z F P f p | f Word dom I p : 0 f V k 0 ..^ f I f k = p k p k + 1 F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1
27 7 26 bitrd G W F U P Z F UPWalks G P F Word dom I P : 0 F V k 0 ..^ F I F k = P k P k + 1