Description: Lemma 2 for itsclc0yqsol . (Contributed by AV, 6-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | itscnhlc0yqe.q | |
|
itscnhlc0yqe.t | |
||
itscnhlc0yqe.u | |
||
itsclc0yqsollem1.d | |
||
Assertion | itsclc0yqsollem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itscnhlc0yqe.q | |
|
2 | itscnhlc0yqe.t | |
|
3 | itscnhlc0yqe.u | |
|
4 | itsclc0yqsollem1.d | |
|
5 | recn | |
|
6 | recn | |
|
7 | recn | |
|
8 | 5 6 7 | 3anim123i | |
9 | recn | |
|
10 | 8 9 | anim12i | |
11 | 10 | 3adant3 | |
12 | 1 2 3 4 | itsclc0yqsollem1 | |
13 | 11 12 | syl | |
14 | 13 | fveq2d | |
15 | 4re | |
|
16 | 15 | a1i | |
17 | simp1 | |
|
18 | 17 | resqcld | |
19 | 18 | 3ad2ant1 | |
20 | 16 19 | remulcld | |
21 | 0re | |
|
22 | 4pos | |
|
23 | 21 15 22 | ltleii | |
24 | 23 | a1i | |
25 | 17 | sqge0d | |
26 | 25 | 3ad2ant1 | |
27 | 16 19 24 26 | mulge0d | |
28 | simp2 | |
|
29 | 28 | resqcld | |
30 | 1 | resum2sqcl | |
31 | 30 | 3adant3 | |
32 | 31 | 3ad2ant1 | |
33 | 29 32 | remulcld | |
34 | simp3 | |
|
35 | 34 | resqcld | |
36 | 35 | 3ad2ant1 | |
37 | 33 36 | resubcld | |
38 | 4 37 | eqeltrid | |
39 | simp3 | |
|
40 | 20 27 38 39 | sqrtmuld | |
41 | 15 23 | pm3.2i | |
42 | 41 | a1i | |
43 | resqcl | |
|
44 | sqge0 | |
|
45 | sqrtmul | |
|
46 | 42 43 44 45 | syl12anc | |
47 | 46 | 3ad2ant1 | |
48 | 47 | 3ad2ant1 | |
49 | sqrt4 | |
|
50 | 49 | a1i | |
51 | absre | |
|
52 | 51 | eqcomd | |
53 | 52 | 3ad2ant1 | |
54 | 53 | 3ad2ant1 | |
55 | 50 54 | oveq12d | |
56 | 48 55 | eqtrd | |
57 | 56 | oveq1d | |
58 | 14 40 57 | 3eqtrd | |