Metamath Proof Explorer


Theorem itsclc0yqsollem2

Description: Lemma 2 for itsclc0yqsol . (Contributed by AV, 6-Feb-2023)

Ref Expression
Hypotheses itscnhlc0yqe.q Q=A2+B2
itscnhlc0yqe.t T=2BC
itscnhlc0yqe.u U=C2A2R2
itsclc0yqsollem1.d D=R2QC2
Assertion itsclc0yqsollem2 ABCR0DT24QU=2AD

Proof

Step Hyp Ref Expression
1 itscnhlc0yqe.q Q=A2+B2
2 itscnhlc0yqe.t T=2BC
3 itscnhlc0yqe.u U=C2A2R2
4 itsclc0yqsollem1.d D=R2QC2
5 recn AA
6 recn BB
7 recn CC
8 5 6 7 3anim123i ABCABC
9 recn RR
10 8 9 anim12i ABCRABCR
11 10 3adant3 ABCR0DABCR
12 1 2 3 4 itsclc0yqsollem1 ABCRT24QU=4A2D
13 11 12 syl ABCR0DT24QU=4A2D
14 13 fveq2d ABCR0DT24QU=4A2D
15 4re 4
16 15 a1i ABCR0D4
17 simp1 ABCA
18 17 resqcld ABCA2
19 18 3ad2ant1 ABCR0DA2
20 16 19 remulcld ABCR0D4A2
21 0re 0
22 4pos 0<4
23 21 15 22 ltleii 04
24 23 a1i ABCR0D04
25 17 sqge0d ABC0A2
26 25 3ad2ant1 ABCR0D0A2
27 16 19 24 26 mulge0d ABCR0D04A2
28 simp2 ABCR0DR
29 28 resqcld ABCR0DR2
30 1 resum2sqcl ABQ
31 30 3adant3 ABCQ
32 31 3ad2ant1 ABCR0DQ
33 29 32 remulcld ABCR0DR2Q
34 simp3 ABCC
35 34 resqcld ABCC2
36 35 3ad2ant1 ABCR0DC2
37 33 36 resubcld ABCR0DR2QC2
38 4 37 eqeltrid ABCR0DD
39 simp3 ABCR0D0D
40 20 27 38 39 sqrtmuld ABCR0D4A2D=4A2D
41 15 23 pm3.2i 404
42 41 a1i A404
43 resqcl AA2
44 sqge0 A0A2
45 sqrtmul 404A20A24A2=4A2
46 42 43 44 45 syl12anc A4A2=4A2
47 46 3ad2ant1 ABC4A2=4A2
48 47 3ad2ant1 ABCR0D4A2=4A2
49 sqrt4 4=2
50 49 a1i ABCR0D4=2
51 absre AA=A2
52 51 eqcomd AA2=A
53 52 3ad2ant1 ABCA2=A
54 53 3ad2ant1 ABCR0DA2=A
55 50 54 oveq12d ABCR0D4A2=2A
56 48 55 eqtrd ABCR0D4A2=2A
57 56 oveq1d ABCR0D4A2D=2AD
58 14 40 57 3eqtrd ABCR0DT24QU=2AD