Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlinecirc02plem2.d |
|
2 |
|
itscnhlinecirc02plem2.e |
|
3 |
|
itscnhlinecirc02plem2.c |
|
4 |
|
simpl1l |
|
5 |
|
simpl1r |
|
6 |
|
simpl2l |
|
7 |
|
simpl2r |
|
8 |
|
eqid |
|
9 |
|
simprl |
|
10 |
|
simprr |
|
11 |
|
simpl3 |
|
12 |
4 5 6 7 1 2 8 9 10 11
|
itscnhlinecirc02plem1 |
|
13 |
|
simplr |
|
14 |
13
|
recnd |
|
15 |
|
simprl |
|
16 |
15
|
recnd |
|
17 |
14 16
|
mulcomd |
|
18 |
|
simpll |
|
19 |
18
|
recnd |
|
20 |
|
simprr |
|
21 |
20
|
recnd |
|
22 |
19 21
|
mulcomd |
|
23 |
17 22
|
oveq12d |
|
24 |
16 19 14
|
subdird |
|
25 |
14 21 19
|
subdird |
|
26 |
24 25
|
oveq12d |
|
27 |
14 19
|
mulcomd |
|
28 |
27
|
oveq1d |
|
29 |
28
|
oveq2d |
|
30 |
16 14
|
mulcld |
|
31 |
19 14
|
mulcld |
|
32 |
21 19
|
mulcld |
|
33 |
30 31 32
|
npncand |
|
34 |
26 29 33
|
3eqtrd |
|
35 |
23 34
|
eqtr4d |
|
36 |
1
|
oveq1i |
|
37 |
2
|
oveq1i |
|
38 |
36 37
|
oveq12i |
|
39 |
35 3 38
|
3eqtr4g |
|
40 |
39
|
oveq2d |
|
41 |
40
|
oveq2d |
|
42 |
41
|
negeqd |
|
43 |
42
|
oveq1d |
|
44 |
39
|
oveq1d |
|
45 |
44
|
oveq1d |
|
46 |
45
|
oveq2d |
|
47 |
46
|
oveq2d |
|
48 |
43 47
|
oveq12d |
|
49 |
48
|
3adant3 |
|
50 |
49
|
adantr |
|
51 |
12 50
|
breqtrrd |
|