Metamath Proof Explorer


Theorem jm2.15nn0

Description: Lemma 2.15 of JonesMatijasevic p. 695. rmY is a polynomial for fixed N, so has the expected congruence property. (Contributed by Stefan O'Rear, 1-Oct-2014)

Ref Expression
Assertion jm2.15nn0 A2B2N0ABAYrmNBYrmN

Proof

Step Hyp Ref Expression
1 eluzelz A2A
2 eluzelz B2B
3 zsubcl ABAB
4 1 2 3 syl2an A2B2AB
5 0z 0
6 congid AB0AB00
7 4 5 6 sylancl A2B2AB00
8 rmy0 A2AYrm0=0
9 rmy0 B2BYrm0=0
10 8 9 oveqan12d A2B2AYrm0BYrm0=00
11 7 10 breqtrrd A2B2ABAYrm0BYrm0
12 1z 1
13 congid AB1AB11
14 4 12 13 sylancl A2B2AB11
15 rmy1 A2AYrm1=1
16 rmy1 B2BYrm1=1
17 15 16 oveqan12d A2B2AYrm1BYrm1=11
18 14 17 breqtrrd A2B2ABAYrm1BYrm1
19 pm3.43 A2B2ABAYrmb1BYrmb1A2B2ABAYrmbBYrmbA2B2ABAYrmb1BYrmb1ABAYrmbBYrmb
20 4 3ad2ant2 bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAB
21 2z 2
22 21 a1i bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmb2
23 simp2l bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbA2
24 nnz bb
25 24 3ad2ant1 bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbb
26 frmy Yrm:2×
27 26 fovcl A2bAYrmb
28 23 25 27 syl2anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAYrmb
29 1 adantr A2B2A
30 29 3ad2ant2 bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbA
31 28 30 zmulcld bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAYrmbA
32 22 31 zmulcld bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmb2AYrmbA
33 simp2r bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbB2
34 26 fovcl B2bBYrmb
35 33 25 34 syl2anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbBYrmb
36 2 adantl A2B2B
37 36 3ad2ant2 bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbB
38 35 37 zmulcld bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbBYrmbB
39 22 38 zmulcld bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmb2BYrmbB
40 peano2zm bb1
41 24 40 syl bb1
42 41 3ad2ant1 bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbb1
43 26 fovcl A2b1AYrmb1
44 23 42 43 syl2anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAYrmb1
45 26 fovcl B2b1BYrmb1
46 33 42 45 syl2anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbBYrmb1
47 congid AB2AB22
48 20 21 47 sylancl bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAB22
49 simp3r bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbABAYrmbBYrmb
50 iddvds ABABAB
51 20 50 syl bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbABAB
52 congmul ABAYrmbBYrmbABABAYrmbBYrmbABABABAYrmbABYrmbB
53 20 28 35 30 37 49 51 52 syl322anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbABAYrmbABYrmbB
54 congmul AB22AYrmbABYrmbBAB22ABAYrmbABYrmbBAB2AYrmbA2BYrmbB
55 20 22 22 31 38 48 53 54 syl322anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAB2AYrmbA2BYrmbB
56 simp3l bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbABAYrmb1BYrmb1
57 congsub AB2AYrmbA2BYrmbBAYrmb1BYrmb1AB2AYrmbA2BYrmbBABAYrmb1BYrmb1AB2AYrmbA-AYrmb1-2BYrmbBBYrmb1
58 20 32 39 44 46 55 56 57 syl322anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAB2AYrmbA-AYrmb1-2BYrmbBBYrmb1
59 rmyluc A2bAYrmb+1=2AYrmbAAYrmb1
60 23 25 59 syl2anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAYrmb+1=2AYrmbAAYrmb1
61 rmyluc B2bBYrmb+1=2BYrmbBBYrmb1
62 33 25 61 syl2anc bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbBYrmb+1=2BYrmbBBYrmb1
63 60 62 oveq12d bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbAYrmb+1BYrmb+1=2AYrmbA-AYrmb1-2BYrmbBBYrmb1
64 58 63 breqtrrd bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbABAYrmb+1BYrmb+1
65 64 3exp bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbABAYrmb+1BYrmb+1
66 65 a2d bA2B2ABAYrmb1BYrmb1ABAYrmbBYrmbA2B2ABAYrmb+1BYrmb+1
67 19 66 syl5 bA2B2ABAYrmb1BYrmb1A2B2ABAYrmbBYrmbA2B2ABAYrmb+1BYrmb+1
68 oveq2 a=0AYrma=AYrm0
69 oveq2 a=0BYrma=BYrm0
70 68 69 oveq12d a=0AYrmaBYrma=AYrm0BYrm0
71 70 breq2d a=0ABAYrmaBYrmaABAYrm0BYrm0
72 71 imbi2d a=0A2B2ABAYrmaBYrmaA2B2ABAYrm0BYrm0
73 oveq2 a=1AYrma=AYrm1
74 oveq2 a=1BYrma=BYrm1
75 73 74 oveq12d a=1AYrmaBYrma=AYrm1BYrm1
76 75 breq2d a=1ABAYrmaBYrmaABAYrm1BYrm1
77 76 imbi2d a=1A2B2ABAYrmaBYrmaA2B2ABAYrm1BYrm1
78 oveq2 a=b1AYrma=AYrmb1
79 oveq2 a=b1BYrma=BYrmb1
80 78 79 oveq12d a=b1AYrmaBYrma=AYrmb1BYrmb1
81 80 breq2d a=b1ABAYrmaBYrmaABAYrmb1BYrmb1
82 81 imbi2d a=b1A2B2ABAYrmaBYrmaA2B2ABAYrmb1BYrmb1
83 oveq2 a=bAYrma=AYrmb
84 oveq2 a=bBYrma=BYrmb
85 83 84 oveq12d a=bAYrmaBYrma=AYrmbBYrmb
86 85 breq2d a=bABAYrmaBYrmaABAYrmbBYrmb
87 86 imbi2d a=bA2B2ABAYrmaBYrmaA2B2ABAYrmbBYrmb
88 oveq2 a=b+1AYrma=AYrmb+1
89 oveq2 a=b+1BYrma=BYrmb+1
90 88 89 oveq12d a=b+1AYrmaBYrma=AYrmb+1BYrmb+1
91 90 breq2d a=b+1ABAYrmaBYrmaABAYrmb+1BYrmb+1
92 91 imbi2d a=b+1A2B2ABAYrmaBYrmaA2B2ABAYrmb+1BYrmb+1
93 oveq2 a=NAYrma=AYrmN
94 oveq2 a=NBYrma=BYrmN
95 93 94 oveq12d a=NAYrmaBYrma=AYrmNBYrmN
96 95 breq2d a=NABAYrmaBYrmaABAYrmNBYrmN
97 96 imbi2d a=NA2B2ABAYrmaBYrmaA2B2ABAYrmNBYrmN
98 11 18 67 72 77 82 87 92 97 2nn0ind N0A2B2ABAYrmNBYrmN
99 98 impcom A2B2N0ABAYrmNBYrmN
100 99 3impa A2B2N0ABAYrmNBYrmN