Metamath Proof Explorer


Theorem karden

Description: If we allow the Axiom of Regularity, we can avoid the Axiom of Choice by defining the cardinal number of a set as the set of all sets equinumerous to it and having the least possible rank. This theorem proves the equinumerosity relationship for this definition (compare carden ). The hypotheses correspond to the definition of kard of Enderton p. 222 (which we don't define separately since currently we do not use it elsewhere). This theorem along with kardex justify the definition of kard. The restriction to the least rank prevents the proper class that would result from { x | x ~A } . (Contributed by NM, 18-Dec-2003) (Revised by AV, 12-Jul-2022)

Ref Expression
Hypotheses karden.a AV
karden.c C=x|xAyyArankxranky
karden.d D=x|xByyBrankxranky
Assertion karden C=DAB

Proof

Step Hyp Ref Expression
1 karden.a AV
2 karden.c C=x|xAyyArankxranky
3 karden.d D=x|xByyBrankxranky
4 breq1 w=AwAAA
5 1 enref AA
6 1 4 5 ceqsexv2d wwA
7 abn0 w|wAwwA
8 6 7 mpbir w|wA
9 scott0 w|wA=zw|wA|yw|wArankzranky=
10 9 necon3bii w|wAzw|wA|yw|wArankzranky
11 8 10 mpbi zw|wA|yw|wArankzranky
12 rabn0 zw|wA|yw|wArankzrankyzw|wAyw|wArankzranky
13 11 12 mpbi zw|wAyw|wArankzranky
14 vex zV
15 breq1 w=zwAzA
16 14 15 elab zw|wAzA
17 breq1 w=ywAyA
18 17 ralab yw|wArankzrankyyyArankzranky
19 16 18 anbi12i zw|wAyw|wArankzrankyzAyyArankzranky
20 simpl zAyyArankzrankyzA
21 20 a1i C=DzAyyArankzrankyzA
22 2 3 eqeq12i C=Dx|xAyyArankxranky=x|xByyBrankxranky
23 abbib x|xAyyArankxranky=x|xByyBrankxrankyxxAyyArankxrankyxByyBrankxranky
24 22 23 bitri C=DxxAyyArankxrankyxByyBrankxranky
25 breq1 x=zxAzA
26 fveq2 x=zrankx=rankz
27 26 sseq1d x=zrankxrankyrankzranky
28 27 imbi2d x=zyArankxrankyyArankzranky
29 28 albidv x=zyyArankxrankyyyArankzranky
30 25 29 anbi12d x=zxAyyArankxrankyzAyyArankzranky
31 breq1 x=zxBzB
32 27 imbi2d x=zyBrankxrankyyBrankzranky
33 32 albidv x=zyyBrankxrankyyyBrankzranky
34 31 33 anbi12d x=zxByyBrankxrankyzByyBrankzranky
35 30 34 bibi12d x=zxAyyArankxrankyxByyBrankxrankyzAyyArankzrankyzByyBrankzranky
36 35 spvv xxAyyArankxrankyxByyBrankxrankyzAyyArankzrankyzByyBrankzranky
37 24 36 sylbi C=DzAyyArankzrankyzByyBrankzranky
38 simpl zByyBrankzrankyzB
39 37 38 syl6bi C=DzAyyArankzrankyzB
40 21 39 jcad C=DzAyyArankzrankyzAzB
41 ensym zAAz
42 entr AzzBAB
43 41 42 sylan zAzBAB
44 40 43 syl6 C=DzAyyArankzrankyAB
45 19 44 biimtrid C=Dzw|wAyw|wArankzrankyAB
46 45 expd C=Dzw|wAyw|wArankzrankyAB
47 46 rexlimdv C=Dzw|wAyw|wArankzrankyAB
48 13 47 mpi C=DAB
49 enen2 ABxAxB
50 enen2 AByAyB
51 50 imbi1d AByArankxrankyyBrankxranky
52 51 albidv AByyArankxrankyyyBrankxranky
53 49 52 anbi12d ABxAyyArankxrankyxByyBrankxranky
54 53 abbidv ABx|xAyyArankxranky=x|xByyBrankxranky
55 54 2 3 3eqtr4g ABC=D
56 48 55 impbii C=DAB