Metamath Proof Explorer


Theorem kelac2

Description: Kelley's choice, most common form: compactness of a product of knob topologies recovers choice. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypotheses kelac2.s φ x I S V
kelac2.z φ x I S
kelac2.k φ 𝑡 x I topGen S 𝒫 S Comp
Assertion kelac2 φ x I S

Proof

Step Hyp Ref Expression
1 kelac2.s φ x I S V
2 kelac2.z φ x I S
3 kelac2.k φ 𝑡 x I topGen S 𝒫 S Comp
4 kelac2lem S V topGen S 𝒫 S Comp
5 cmptop topGen S 𝒫 S Comp topGen S 𝒫 S Top
6 1 4 5 3syl φ x I topGen S 𝒫 S Top
7 uncom S 𝒫 S = 𝒫 S S
8 7 difeq1i S 𝒫 S S = 𝒫 S S S
9 difun2 𝒫 S S S = 𝒫 S S
10 8 9 eqtri S 𝒫 S S = 𝒫 S S
11 snex 𝒫 S V
12 uniprg S V 𝒫 S V S 𝒫 S = S 𝒫 S
13 1 11 12 sylancl φ x I S 𝒫 S = S 𝒫 S
14 13 difeq1d φ x I S 𝒫 S S = S 𝒫 S S
15 incom 𝒫 S S = S 𝒫 S
16 pwuninel ¬ 𝒫 S S
17 16 a1i φ x I ¬ 𝒫 S S
18 disjsn S 𝒫 S = ¬ 𝒫 S S
19 17 18 sylibr φ x I S 𝒫 S =
20 15 19 eqtrid φ x I 𝒫 S S =
21 disj3 𝒫 S S = 𝒫 S = 𝒫 S S
22 20 21 sylib φ x I 𝒫 S = 𝒫 S S
23 10 14 22 3eqtr4a φ x I S 𝒫 S S = 𝒫 S
24 prex S 𝒫 S V
25 bastg S 𝒫 S V S 𝒫 S topGen S 𝒫 S
26 24 25 mp1i φ x I S 𝒫 S topGen S 𝒫 S
27 11 prid2 𝒫 S S 𝒫 S
28 27 a1i φ x I 𝒫 S S 𝒫 S
29 26 28 sseldd φ x I 𝒫 S topGen S 𝒫 S
30 23 29 eqeltrd φ x I S 𝒫 S S topGen S 𝒫 S
31 prid1g S V S S 𝒫 S
32 elssuni S S 𝒫 S S S 𝒫 S
33 1 31 32 3syl φ x I S S 𝒫 S
34 unitg S 𝒫 S V topGen S 𝒫 S = S 𝒫 S
35 24 34 ax-mp topGen S 𝒫 S = S 𝒫 S
36 35 eqcomi S 𝒫 S = topGen S 𝒫 S
37 36 iscld2 topGen S 𝒫 S Top S S 𝒫 S S Clsd topGen S 𝒫 S S 𝒫 S S topGen S 𝒫 S
38 6 33 37 syl2anc φ x I S Clsd topGen S 𝒫 S S 𝒫 S S topGen S 𝒫 S
39 30 38 mpbird φ x I S Clsd topGen S 𝒫 S
40 f1oi I S : S 1-1 onto S
41 40 a1i φ x I I S : S 1-1 onto S
42 elssuni 𝒫 S S 𝒫 S 𝒫 S S 𝒫 S
43 27 42 mp1i φ x I 𝒫 S S 𝒫 S
44 uniexg S V S V
45 pwexg S V 𝒫 S V
46 snidg 𝒫 S V 𝒫 S 𝒫 S
47 1 44 45 46 4syl φ x I 𝒫 S 𝒫 S
48 43 47 sseldd φ x I 𝒫 S S 𝒫 S
49 48 35 eleqtrrdi φ x I 𝒫 S topGen S 𝒫 S
50 2 6 39 41 49 3 kelac1 φ x I S