Metamath Proof Explorer


Theorem knoppndvlem13

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 1-Jul-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem13.c φC11
knoppndvlem13.n φN
knoppndvlem13.1 φ1<NC
Assertion knoppndvlem13 φC0

Proof

Step Hyp Ref Expression
1 knoppndvlem13.c φC11
2 knoppndvlem13.n φN
3 knoppndvlem13.1 φ1<NC
4 3 adantr φC=01<NC
5 0lt1 0<1
6 0re 0
7 1re 1
8 6 7 ltnsymi 0<1¬1<0
9 5 8 ax-mp ¬1<0
10 9 a1i φC=0¬1<0
11 id C=0C=0
12 11 abs00bd C=0C=0
13 12 oveq2d C=0NC= N0
14 13 adantl φC=0NC= N0
15 nncn NN
16 2 15 syl φN
17 16 adantr φC=0N
18 17 mul01d φC=0 N0=0
19 14 18 eqtrd φC=0NC=0
20 19 eqcomd φC=00=NC
21 20 breq2d φC=01<01<NC
22 10 21 mtbid φC=0¬1<NC
23 4 22 pm2.65da φ¬C=0
24 23 neqned φC0