Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima , which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | kqval.2 | |
|
Assertion | kqfvima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kqval.2 | |
|
2 | 1 | kqffn | |
3 | 2 | 3ad2ant1 | |
4 | toponss | |
|
5 | 4 | 3adant3 | |
6 | fnfvima | |
|
7 | 6 | 3expia | |
8 | 3 5 7 | syl2anc | |
9 | fnfun | |
|
10 | fvelima | |
|
11 | 10 | ex | |
12 | 3 9 11 | 3syl | |
13 | simpl1 | |
|
14 | 5 | sselda | |
15 | simpl3 | |
|
16 | 1 | kqfeq | |
17 | 13 14 15 16 | syl3anc | |
18 | eleq2 | |
|
19 | eleq2 | |
|
20 | 18 19 | bibi12d | |
21 | 20 | cbvralvw | |
22 | 17 21 | bitrdi | |
23 | simpl2 | |
|
24 | eleq2 | |
|
25 | eleq2 | |
|
26 | 24 25 | bibi12d | |
27 | 26 | rspcv | |
28 | 23 27 | syl | |
29 | 22 28 | sylbid | |
30 | simpr | |
|
31 | biimp | |
|
32 | 29 30 31 | syl6ci | |
33 | 32 | rexlimdva | |
34 | 12 33 | syld | |
35 | 8 34 | impbid | |