| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kqval.2 |  | 
						
							| 2 | 1 | kqffn |  | 
						
							| 3 | 2 | 3ad2ant1 |  | 
						
							| 4 |  | toponss |  | 
						
							| 5 | 4 | 3adant3 |  | 
						
							| 6 |  | fnfvima |  | 
						
							| 7 | 6 | 3expia |  | 
						
							| 8 | 3 5 7 | syl2anc |  | 
						
							| 9 |  | fnfun |  | 
						
							| 10 |  | fvelima |  | 
						
							| 11 | 10 | ex |  | 
						
							| 12 | 3 9 11 | 3syl |  | 
						
							| 13 |  | simpl1 |  | 
						
							| 14 | 5 | sselda |  | 
						
							| 15 |  | simpl3 |  | 
						
							| 16 | 1 | kqfeq |  | 
						
							| 17 | 13 14 15 16 | syl3anc |  | 
						
							| 18 |  | eleq2 |  | 
						
							| 19 |  | eleq2 |  | 
						
							| 20 | 18 19 | bibi12d |  | 
						
							| 21 | 20 | cbvralvw |  | 
						
							| 22 | 17 21 | bitrdi |  | 
						
							| 23 |  | simpl2 |  | 
						
							| 24 |  | eleq2 |  | 
						
							| 25 |  | eleq2 |  | 
						
							| 26 | 24 25 | bibi12d |  | 
						
							| 27 | 26 | rspcv |  | 
						
							| 28 | 23 27 | syl |  | 
						
							| 29 | 22 28 | sylbid |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 |  | biimp |  | 
						
							| 32 | 29 30 31 | syl6ci |  | 
						
							| 33 | 32 | rexlimdva |  | 
						
							| 34 | 12 33 | syld |  | 
						
							| 35 | 8 34 | impbid |  |