Metamath Proof Explorer


Theorem kqfvima

Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima , which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion kqfvima JTopOnXUJAXAUFAFU

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 1 kqffn JTopOnXFFnX
3 2 3ad2ant1 JTopOnXUJAXFFnX
4 toponss JTopOnXUJUX
5 4 3adant3 JTopOnXUJAXUX
6 fnfvima FFnXUXAUFAFU
7 6 3expia FFnXUXAUFAFU
8 3 5 7 syl2anc JTopOnXUJAXAUFAFU
9 fnfun FFnXFunF
10 fvelima FunFFAFUzUFz=FA
11 10 ex FunFFAFUzUFz=FA
12 3 9 11 3syl JTopOnXUJAXFAFUzUFz=FA
13 simpl1 JTopOnXUJAXzUJTopOnX
14 5 sselda JTopOnXUJAXzUzX
15 simpl3 JTopOnXUJAXzUAX
16 1 kqfeq JTopOnXzXAXFz=FAyJzyAy
17 13 14 15 16 syl3anc JTopOnXUJAXzUFz=FAyJzyAy
18 eleq2 y=wzyzw
19 eleq2 y=wAyAw
20 18 19 bibi12d y=wzyAyzwAw
21 20 cbvralvw yJzyAywJzwAw
22 17 21 bitrdi JTopOnXUJAXzUFz=FAwJzwAw
23 simpl2 JTopOnXUJAXzUUJ
24 eleq2 w=UzwzU
25 eleq2 w=UAwAU
26 24 25 bibi12d w=UzwAwzUAU
27 26 rspcv UJwJzwAwzUAU
28 23 27 syl JTopOnXUJAXzUwJzwAwzUAU
29 22 28 sylbid JTopOnXUJAXzUFz=FAzUAU
30 simpr JTopOnXUJAXzUzU
31 biimp zUAUzUAU
32 29 30 31 syl6ci JTopOnXUJAXzUFz=FAAU
33 32 rexlimdva JTopOnXUJAXzUFz=FAAU
34 12 33 syld JTopOnXUJAXFAFUAU
35 8 34 impbid JTopOnXUJAXAUFAFU