Metamath Proof Explorer


Theorem lcdlvec

Description: The dual vector space of functionals with closed kernels is a left vector space. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses lcdlmod.h H=LHypK
lcdlmod.c C=LCDualKW
lcdlmod.k φKHLWH
Assertion lcdlvec φCLVec

Proof

Step Hyp Ref Expression
1 lcdlmod.h H=LHypK
2 lcdlmod.c C=LCDualKW
3 lcdlmod.k φKHLWH
4 eqid ocHKW=ocHKW
5 eqid DVecHKW=DVecHKW
6 eqid LFnlDVecHKW=LFnlDVecHKW
7 eqid LKerDVecHKW=LKerDVecHKW
8 eqid LDualDVecHKW=LDualDVecHKW
9 1 4 2 5 6 7 8 3 lcdval φC=LDualDVecHKW𝑠fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf
10 1 5 3 dvhlvec φDVecHKWLVec
11 8 10 lduallvec φLDualDVecHKWLVec
12 eqid LSubSpLDualDVecHKW=LSubSpLDualDVecHKW
13 eqid fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf=fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf
14 1 5 4 6 7 8 12 13 3 lclkr φfLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWfLSubSpLDualDVecHKW
15 eqid LDualDVecHKW𝑠fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf=LDualDVecHKW𝑠fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWf
16 15 12 lsslvec LDualDVecHKWLVecfLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWfLSubSpLDualDVecHKWLDualDVecHKW𝑠fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWfLVec
17 11 14 16 syl2anc φLDualDVecHKW𝑠fLFnlDVecHKW|ocHKWocHKWLKerDVecHKWf=LKerDVecHKWfLVec
18 9 17 eqeltrd φCLVec