Metamath Proof Explorer


Theorem lcdvsub

Description: The value of vector subtraction in the closed kernel dual space. (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses lcdvsub.h H=LHypK
lcdvsub.u U=DVecHKW
lcdvsub.s S=ScalarU
lcdvsub.n N=invgS
lcdvsub.e 1˙=1S
lcdvsub.c C=LCDualKW
lcdvsub.v V=BaseC
lcdvsub.p +˙=+C
lcdvsub.t ·˙=C
lcdvsub.m -˙=-C
lcdvsub.k φKHLWH
lcdvsub.f φFV
lcdvsub.g φGV
Assertion lcdvsub φF-˙G=F+˙N1˙·˙G

Proof

Step Hyp Ref Expression
1 lcdvsub.h H=LHypK
2 lcdvsub.u U=DVecHKW
3 lcdvsub.s S=ScalarU
4 lcdvsub.n N=invgS
5 lcdvsub.e 1˙=1S
6 lcdvsub.c C=LCDualKW
7 lcdvsub.v V=BaseC
8 lcdvsub.p +˙=+C
9 lcdvsub.t ·˙=C
10 lcdvsub.m -˙=-C
11 lcdvsub.k φKHLWH
12 lcdvsub.f φFV
13 lcdvsub.g φGV
14 1 6 11 lcdlmod φCLMod
15 eqid ScalarC=ScalarC
16 eqid invgScalarC=invgScalarC
17 eqid 1ScalarC=1ScalarC
18 7 8 10 15 9 16 17 lmodvsubval2 CLModFVGVF-˙G=F+˙invgScalarC1ScalarC·˙G
19 14 12 13 18 syl3anc φF-˙G=F+˙invgScalarC1ScalarC·˙G
20 eqid opprS=opprS
21 20 4 opprneg N=invgopprS
22 1 2 3 20 6 15 11 lcdsca φScalarC=opprS
23 22 fveq2d φinvgScalarC=invgopprS
24 21 23 eqtr4id φN=invgScalarC
25 20 5 oppr1 1˙=1opprS
26 22 fveq2d φ1ScalarC=1opprS
27 25 26 eqtr4id φ1˙=1ScalarC
28 24 27 fveq12d φN1˙=invgScalarC1ScalarC
29 28 oveq1d φN1˙·˙G=invgScalarC1ScalarC·˙G
30 29 oveq2d φF+˙N1˙·˙G=F+˙invgScalarC1ScalarC·˙G
31 19 30 eqtr4d φF-˙G=F+˙N1˙·˙G