Description: Lemma for lcfr . Special case of lcfrlem37 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcfrlem17.h | |
|
lcfrlem17.o | |
||
lcfrlem17.u | |
||
lcfrlem17.v | |
||
lcfrlem17.p | |
||
lcfrlem17.z | |
||
lcfrlem17.n | |
||
lcfrlem17.a | |
||
lcfrlem17.k | |
||
lcfrlem17.x | |
||
lcfrlem17.y | |
||
lcfrlem17.ne | |
||
lcfrlem22.b | |
||
lcfrlem24.t | |
||
lcfrlem24.s | |
||
lcfrlem24.q | |
||
lcfrlem24.r | |
||
lcfrlem24.j | |
||
lcfrlem24.ib | |
||
lcfrlem24.l | |
||
lcfrlem25.d | |
||
lcfrlem25.jz | |
||
lcfrlem25.in | |
||
lcfrlem27.g | |
||
lcfrlem27.gs | |
||
lcfrlem27.e | |
||
lcfrlem27.xe | |
||
lcfrlem27.ye | |
||
Assertion | lcfrlem27 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | |
|
2 | lcfrlem17.o | |
|
3 | lcfrlem17.u | |
|
4 | lcfrlem17.v | |
|
5 | lcfrlem17.p | |
|
6 | lcfrlem17.z | |
|
7 | lcfrlem17.n | |
|
8 | lcfrlem17.a | |
|
9 | lcfrlem17.k | |
|
10 | lcfrlem17.x | |
|
11 | lcfrlem17.y | |
|
12 | lcfrlem17.ne | |
|
13 | lcfrlem22.b | |
|
14 | lcfrlem24.t | |
|
15 | lcfrlem24.s | |
|
16 | lcfrlem24.q | |
|
17 | lcfrlem24.r | |
|
18 | lcfrlem24.j | |
|
19 | lcfrlem24.ib | |
|
20 | lcfrlem24.l | |
|
21 | lcfrlem25.d | |
|
22 | lcfrlem25.jz | |
|
23 | lcfrlem25.in | |
|
24 | lcfrlem27.g | |
|
25 | lcfrlem27.gs | |
|
26 | lcfrlem27.e | |
|
27 | lcfrlem27.xe | |
|
28 | lcfrlem27.ye | |
|
29 | eqid | |
|
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | eldifsni | |
|
34 | 11 33 | syl | |
35 | eldifsn | |
|
36 | 28 34 35 | sylanbrc | |
37 | 1 2 3 4 5 14 15 17 6 29 20 21 30 31 18 9 32 24 25 26 36 | lcfrlem16 | |
38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | lcfrlem26 | |
39 | 2fveq3 | |
|
40 | 39 | eleq2d | |
41 | 40 | rspcev | |
42 | 37 38 41 | syl2anc | |
43 | eliun | |
|
44 | 42 43 | sylibr | |
45 | 44 26 | eleqtrrdi | |