Metamath Proof Explorer


Theorem lcfrlem27

Description: Lemma for lcfr . Special case of lcfrlem37 when ( ( JY )I ) is zero. (Contributed by NM, 11-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem25.jz φJYI=Q
lcfrlem25.in φI0˙
lcfrlem27.g φGLSubSpD
lcfrlem27.gs φGfLFnlU|˙˙Lf=Lf
lcfrlem27.e E=gG˙Lg
lcfrlem27.xe φXE
lcfrlem27.ye φYE
Assertion lcfrlem27 φX+˙YE

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem25.jz φJYI=Q
23 lcfrlem25.in φI0˙
24 lcfrlem27.g φGLSubSpD
25 lcfrlem27.gs φGfLFnlU|˙˙Lf=Lf
26 lcfrlem27.e E=gG˙Lg
27 lcfrlem27.xe φXE
28 lcfrlem27.ye φYE
29 eqid LFnlU=LFnlU
30 eqid 0D=0D
31 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
32 eqid LSubSpD=LSubSpD
33 eldifsni YV0˙Y0˙
34 11 33 syl φY0˙
35 eldifsn YE0˙YEY0˙
36 28 34 35 sylanbrc φYE0˙
37 1 2 3 4 5 14 15 17 6 29 20 21 30 31 18 9 32 24 25 26 36 lcfrlem16 φJYG
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 lcfrlem26 φX+˙Y˙LJY
39 2fveq3 g=JY˙Lg=˙LJY
40 39 eleq2d g=JYX+˙Y˙LgX+˙Y˙LJY
41 40 rspcev JYGX+˙Y˙LJYgGX+˙Y˙Lg
42 37 38 41 syl2anc φgGX+˙Y˙Lg
43 eliun X+˙YgG˙LggGX+˙Y˙Lg
44 42 43 sylibr φX+˙YgG˙Lg
45 44 26 eleqtrrdi φX+˙YE