Metamath Proof Explorer


Theorem lcfrlem29

Description: Lemma for lcfr . (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H=LHypK
lcfrlem17.o ˙=ocHKW
lcfrlem17.u U=DVecHKW
lcfrlem17.v V=BaseU
lcfrlem17.p +˙=+U
lcfrlem17.z 0˙=0U
lcfrlem17.n N=LSpanU
lcfrlem17.a A=LSAtomsU
lcfrlem17.k φKHLWH
lcfrlem17.x φXV0˙
lcfrlem17.y φYV0˙
lcfrlem17.ne φNXNY
lcfrlem22.b B=NXY˙X+˙Y
lcfrlem24.t ·˙=U
lcfrlem24.s S=ScalarU
lcfrlem24.q Q=0S
lcfrlem24.r R=BaseS
lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
lcfrlem24.ib φIB
lcfrlem24.l L=LKerU
lcfrlem25.d D=LDualU
lcfrlem28.jn φJYIQ
lcfrlem29.i F=invrS
Assertion lcfrlem29 φFJYISJXIR

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H=LHypK
2 lcfrlem17.o ˙=ocHKW
3 lcfrlem17.u U=DVecHKW
4 lcfrlem17.v V=BaseU
5 lcfrlem17.p +˙=+U
6 lcfrlem17.z 0˙=0U
7 lcfrlem17.n N=LSpanU
8 lcfrlem17.a A=LSAtomsU
9 lcfrlem17.k φKHLWH
10 lcfrlem17.x φXV0˙
11 lcfrlem17.y φYV0˙
12 lcfrlem17.ne φNXNY
13 lcfrlem22.b B=NXY˙X+˙Y
14 lcfrlem24.t ·˙=U
15 lcfrlem24.s S=ScalarU
16 lcfrlem24.q Q=0S
17 lcfrlem24.r R=BaseS
18 lcfrlem24.j J=xV0˙vVιkR|w˙xv=w+˙k·˙x
19 lcfrlem24.ib φIB
20 lcfrlem24.l L=LKerU
21 lcfrlem25.d D=LDualU
22 lcfrlem28.jn φJYIQ
23 lcfrlem29.i F=invrS
24 1 3 9 dvhlmod φULMod
25 15 lmodring ULModSRing
26 24 25 syl φSRing
27 1 3 9 dvhlvec φULVec
28 15 lvecdrng ULVecSDivRing
29 27 28 syl φSDivRing
30 eqid LFnlU=LFnlU
31 eqid 0D=0D
32 eqid fLFnlU|˙˙Lf=Lf=fLFnlU|˙˙Lf=Lf
33 1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 11 lcfrlem10 φJYLFnlU
34 eqid LSubSpU=LSubSpU
35 1 2 3 4 5 6 7 8 9 10 11 12 13 lcfrlem22 φBA
36 34 8 24 35 lsatlssel φBLSubSpU
37 4 34 lssel BLSubSpUIBIV
38 36 19 37 syl2anc φIV
39 15 17 4 30 lflcl ULModJYLFnlUIVJYIR
40 24 33 38 39 syl3anc φJYIR
41 17 16 23 drnginvrcl SDivRingJYIRJYIQFJYIR
42 29 40 22 41 syl3anc φFJYIR
43 1 2 3 4 5 14 15 17 6 30 20 21 31 32 18 9 10 lcfrlem10 φJXLFnlU
44 15 17 4 30 lflcl ULModJXLFnlUIVJXIR
45 24 43 38 44 syl3anc φJXIR
46 eqid S=S
47 17 46 ringcl SRingFJYIRJXIRFJYISJXIR
48 26 42 45 47 syl3anc φFJYISJXIR