Metamath Proof Explorer


Theorem lclkrlem2h

Description: Lemma for lclkr . Eliminate the ( L( E .+ G ) ) e. J hypothesis. (Contributed by NM, 16-Jan-2015)

Ref Expression
Hypotheses lclkrlem2f.h H=LHypK
lclkrlem2f.o ˙=ocHKW
lclkrlem2f.u U=DVecHKW
lclkrlem2f.v V=BaseU
lclkrlem2f.s S=ScalarU
lclkrlem2f.q Q=0S
lclkrlem2f.z 0˙=0U
lclkrlem2f.a ˙=LSSumU
lclkrlem2f.n N=LSpanU
lclkrlem2f.f F=LFnlU
lclkrlem2f.j J=LSHypU
lclkrlem2f.l L=LKerU
lclkrlem2f.d D=LDualU
lclkrlem2f.p +˙=+D
lclkrlem2f.k φKHLWH
lclkrlem2f.b φBV0˙
lclkrlem2f.e φEF
lclkrlem2f.g φGF
lclkrlem2f.le φLE=˙X
lclkrlem2f.lg φLG=˙Y
lclkrlem2f.kb φE+˙GB=Q
lclkrlem2f.nx φ¬X˙B¬Y˙B
lclkrlem2h.x φXV0˙
lclkrlem2h.y φYV0˙
lclkrlem2h.ne φLELG
Assertion lclkrlem2h φ˙˙LE+˙G=LE+˙G

Proof

Step Hyp Ref Expression
1 lclkrlem2f.h H=LHypK
2 lclkrlem2f.o ˙=ocHKW
3 lclkrlem2f.u U=DVecHKW
4 lclkrlem2f.v V=BaseU
5 lclkrlem2f.s S=ScalarU
6 lclkrlem2f.q Q=0S
7 lclkrlem2f.z 0˙=0U
8 lclkrlem2f.a ˙=LSSumU
9 lclkrlem2f.n N=LSpanU
10 lclkrlem2f.f F=LFnlU
11 lclkrlem2f.j J=LSHypU
12 lclkrlem2f.l L=LKerU
13 lclkrlem2f.d D=LDualU
14 lclkrlem2f.p +˙=+D
15 lclkrlem2f.k φKHLWH
16 lclkrlem2f.b φBV0˙
17 lclkrlem2f.e φEF
18 lclkrlem2f.g φGF
19 lclkrlem2f.le φLE=˙X
20 lclkrlem2f.lg φLG=˙Y
21 lclkrlem2f.kb φE+˙GB=Q
22 lclkrlem2f.nx φ¬X˙B¬Y˙B
23 lclkrlem2h.x φXV0˙
24 lclkrlem2h.y φYV0˙
25 lclkrlem2h.ne φLELG
26 15 adantr φLE+˙GJKHLWH
27 16 adantr φLE+˙GJBV0˙
28 17 adantr φLE+˙GJEF
29 18 adantr φLE+˙GJGF
30 19 adantr φLE+˙GJLE=˙X
31 20 adantr φLE+˙GJLG=˙Y
32 21 adantr φLE+˙GJE+˙GB=Q
33 22 adantr φLE+˙GJ¬X˙B¬Y˙B
34 23 adantr φLE+˙GJXV0˙
35 24 adantr φLE+˙GJYV0˙
36 25 adantr φLE+˙GJLELG
37 simpr φLE+˙GJLE+˙GJ
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 26 27 28 29 30 31 32 33 34 35 36 37 lclkrlem2g φLE+˙GJ˙˙LE+˙G=LE+˙G
39 1 3 2 4 15 dochoc1 φ˙˙V=V
40 39 adantr φ¬LE+˙GJ˙˙V=V
41 1 3 15 dvhlvec φULVec
42 1 3 15 dvhlmod φULMod
43 10 13 14 42 17 18 ldualvaddcl φE+˙GF
44 4 11 10 12 41 43 lkrshpor φLE+˙GJLE+˙G=V
45 44 orcanai φ¬LE+˙GJLE+˙G=V
46 45 fveq2d φ¬LE+˙GJ˙LE+˙G=˙V
47 46 fveq2d φ¬LE+˙GJ˙˙LE+˙G=˙˙V
48 40 47 45 3eqtr4d φ¬LE+˙GJ˙˙LE+˙G=LE+˙G
49 38 48 pm2.61dan φ˙˙LE+˙G=LE+˙G