Metamath Proof Explorer


Theorem lcmfunnnd

Description: Useful equation to calculate the least common multiple of 1 to n. (Contributed by metakunt, 29-Apr-2024)

Ref Expression
Hypothesis lcmfunnnd.1 φN
Assertion lcmfunnnd φlcm_1N=lcm_1N1lcmN

Proof

Step Hyp Ref Expression
1 lcmfunnnd.1 φN
2 1 nncnd φN
3 1cnd φ1
4 2 3 npcand φN-1+1=N
5 4 oveq2d φ1N-1+1=1N
6 nnm1nn0 NN10
7 1 6 syl φN10
8 nn0uz 0=0
9 8 eleq2i N10N10
10 7 9 sylib φN10
11 1m1e0 11=0
12 11 fveq2i 11=0
13 12 eleq2i N111N10
14 13 a1i φN111N10
15 10 14 mpbird φN111
16 1z 1
17 fzsuc2 1N1111N-1+1=1N1N-1+1
18 16 17 mpan N1111N-1+1=1N1N-1+1
19 15 18 syl φ1N-1+1=1N1N-1+1
20 5 19 eqtr3d φ1N=1N1N-1+1
21 4 sneqd φN-1+1=N
22 21 uneq2d φ1N1N-1+1=1N1N
23 20 22 eqtrd φ1N=1N1N
24 23 fveq2d φlcm_1N=lcm_1N1N
25 fzssz 1N1
26 25 a1i φ1N1
27 fzfi 1N1Fin
28 27 a1i φ1N1Fin
29 nnz NN
30 1 29 syl φN
31 26 28 30 3jca φ1N11N1FinN
32 lcmfunsn 1N11N1FinNlcm_1N1N=lcm_1N1lcmN
33 31 32 syl φlcm_1N1N=lcm_1N1lcmN
34 24 33 eqtrd φlcm_1N=lcm_1N1lcmN