Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Least common multiple inequality theorem
lcmineqlem13
Next ⟩
lcmineqlem14
Metamath Proof Explorer
Ascii
Unicode
Theorem
lcmineqlem13
Description:
Induction proof for lcm integral.
(Contributed by
metakunt
, 12-May-2024)
Ref
Expression
Hypotheses
lcmineqlem13.1
⊢
F
=
∫
0
1
x
M
−
1
1
−
x
N
−
M
d
x
lcmineqlem13.2
⊢
φ
→
M
∈
ℕ
lcmineqlem13.3
⊢
φ
→
N
∈
ℕ
lcmineqlem13.4
⊢
φ
→
M
≤
N
Assertion
lcmineqlem13
⊢
φ
→
F
=
1
M
(
N
M
)
Proof
Step
Hyp
Ref
Expression
1
lcmineqlem13.1
⊢
F
=
∫
0
1
x
M
−
1
1
−
x
N
−
M
d
x
2
lcmineqlem13.2
⊢
φ
→
M
∈
ℕ
3
lcmineqlem13.3
⊢
φ
→
N
∈
ℕ
4
lcmineqlem13.4
⊢
φ
→
M
≤
N
5
2
nnzd
⊢
φ
→
M
∈
ℤ
6
nnge1
⊢
M
∈
ℕ
→
1
≤
M
7
2
6
syl
⊢
φ
→
1
≤
M
8
5
7
4
3jca
⊢
φ
→
M
∈
ℤ
∧
1
≤
M
∧
M
≤
N
9
oveq1
⊢
i
=
1
→
i
−
1
=
1
−
1
10
9
oveq2d
⊢
i
=
1
→
x
i
−
1
=
x
1
−
1
11
oveq2
⊢
i
=
1
→
N
−
i
=
N
−
1
12
11
oveq2d
⊢
i
=
1
→
1
−
x
N
−
i
=
1
−
x
N
−
1
13
10
12
oveq12d
⊢
i
=
1
→
x
i
−
1
1
−
x
N
−
i
=
x
1
−
1
1
−
x
N
−
1
14
13
adantr
⊢
i
=
1
∧
x
∈
0
1
→
x
i
−
1
1
−
x
N
−
i
=
x
1
−
1
1
−
x
N
−
1
15
14
itgeq2dv
⊢
i
=
1
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
∫
0
1
x
1
−
1
1
−
x
N
−
1
d
x
16
id
⊢
i
=
1
→
i
=
1
17
oveq2
⊢
i
=
1
→
(
N
i
)
=
(
N
1
)
18
16
17
oveq12d
⊢
i
=
1
→
i
(
N
i
)
=
1
(
N
1
)
19
18
oveq2d
⊢
i
=
1
→
1
i
(
N
i
)
=
1
1
(
N
1
)
20
15
19
eqeq12d
⊢
i
=
1
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
1
i
(
N
i
)
↔
∫
0
1
x
1
−
1
1
−
x
N
−
1
d
x
=
1
1
(
N
1
)
21
oveq1
⊢
i
=
m
→
i
−
1
=
m
−
1
22
21
oveq2d
⊢
i
=
m
→
x
i
−
1
=
x
m
−
1
23
oveq2
⊢
i
=
m
→
N
−
i
=
N
−
m
24
23
oveq2d
⊢
i
=
m
→
1
−
x
N
−
i
=
1
−
x
N
−
m
25
22
24
oveq12d
⊢
i
=
m
→
x
i
−
1
1
−
x
N
−
i
=
x
m
−
1
1
−
x
N
−
m
26
25
adantr
⊢
i
=
m
∧
x
∈
0
1
→
x
i
−
1
1
−
x
N
−
i
=
x
m
−
1
1
−
x
N
−
m
27
26
itgeq2dv
⊢
i
=
m
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
28
id
⊢
i
=
m
→
i
=
m
29
oveq2
⊢
i
=
m
→
(
N
i
)
=
(
N
m
)
30
28
29
oveq12d
⊢
i
=
m
→
i
(
N
i
)
=
m
(
N
m
)
31
30
oveq2d
⊢
i
=
m
→
1
i
(
N
i
)
=
1
m
(
N
m
)
32
27
31
eqeq12d
⊢
i
=
m
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
1
i
(
N
i
)
↔
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
1
m
(
N
m
)
33
oveq1
⊢
i
=
m
+
1
→
i
−
1
=
m
+
1
-
1
34
33
oveq2d
⊢
i
=
m
+
1
→
x
i
−
1
=
x
m
+
1
-
1
35
oveq2
⊢
i
=
m
+
1
→
N
−
i
=
N
−
m
+
1
36
35
oveq2d
⊢
i
=
m
+
1
→
1
−
x
N
−
i
=
1
−
x
N
−
m
+
1
37
34
36
oveq12d
⊢
i
=
m
+
1
→
x
i
−
1
1
−
x
N
−
i
=
x
m
+
1
-
1
1
−
x
N
−
m
+
1
38
37
adantr
⊢
i
=
m
+
1
∧
x
∈
0
1
→
x
i
−
1
1
−
x
N
−
i
=
x
m
+
1
-
1
1
−
x
N
−
m
+
1
39
38
itgeq2dv
⊢
i
=
m
+
1
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
∫
0
1
x
m
+
1
-
1
1
−
x
N
−
m
+
1
d
x
40
id
⊢
i
=
m
+
1
→
i
=
m
+
1
41
oveq2
⊢
i
=
m
+
1
→
(
N
i
)
=
(
N
m
+
1
)
42
40
41
oveq12d
⊢
i
=
m
+
1
→
i
(
N
i
)
=
m
+
1
(
N
m
+
1
)
43
42
oveq2d
⊢
i
=
m
+
1
→
1
i
(
N
i
)
=
1
m
+
1
(
N
m
+
1
)
44
39
43
eqeq12d
⊢
i
=
m
+
1
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
1
i
(
N
i
)
↔
∫
0
1
x
m
+
1
-
1
1
−
x
N
−
m
+
1
d
x
=
1
m
+
1
(
N
m
+
1
)
45
oveq1
⊢
i
=
M
→
i
−
1
=
M
−
1
46
45
oveq2d
⊢
i
=
M
→
x
i
−
1
=
x
M
−
1
47
oveq2
⊢
i
=
M
→
N
−
i
=
N
−
M
48
47
oveq2d
⊢
i
=
M
→
1
−
x
N
−
i
=
1
−
x
N
−
M
49
46
48
oveq12d
⊢
i
=
M
→
x
i
−
1
1
−
x
N
−
i
=
x
M
−
1
1
−
x
N
−
M
50
49
adantr
⊢
i
=
M
∧
x
∈
0
1
→
x
i
−
1
1
−
x
N
−
i
=
x
M
−
1
1
−
x
N
−
M
51
50
itgeq2dv
⊢
i
=
M
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
∫
0
1
x
M
−
1
1
−
x
N
−
M
d
x
52
id
⊢
i
=
M
→
i
=
M
53
oveq2
⊢
i
=
M
→
(
N
i
)
=
(
N
M
)
54
52
53
oveq12d
⊢
i
=
M
→
i
(
N
i
)
=
M
(
N
M
)
55
54
oveq2d
⊢
i
=
M
→
1
i
(
N
i
)
=
1
M
(
N
M
)
56
51
55
eqeq12d
⊢
i
=
M
→
∫
0
1
x
i
−
1
1
−
x
N
−
i
d
x
=
1
i
(
N
i
)
↔
∫
0
1
x
M
−
1
1
−
x
N
−
M
d
x
=
1
M
(
N
M
)
57
3
lcmineqlem12
⊢
φ
→
∫
0
1
x
1
−
1
1
−
x
N
−
1
d
x
=
1
1
(
N
1
)
58
elnnz1
⊢
m
∈
ℕ
↔
m
∈
ℤ
∧
1
≤
m
59
58
biimpri
⊢
m
∈
ℤ
∧
1
≤
m
→
m
∈
ℕ
60
59
3adant3
⊢
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
→
m
∈
ℕ
61
60
adantl
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
→
m
∈
ℕ
62
3
adantr
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
→
N
∈
ℕ
63
simpr3
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
→
m
<
N
64
61
62
63
lcmineqlem10
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
→
∫
0
1
x
m
+
1
-
1
1
−
x
N
−
m
+
1
d
x
=
m
N
−
m
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
65
64
3adant3
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
∧
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
1
m
(
N
m
)
→
∫
0
1
x
m
+
1
-
1
1
−
x
N
−
m
+
1
d
x
=
m
N
−
m
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
66
oveq2
⊢
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
1
m
(
N
m
)
→
m
N
−
m
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
m
N
−
m
1
m
(
N
m
)
67
66
3ad2ant3
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
∧
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
1
m
(
N
m
)
→
m
N
−
m
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
m
N
−
m
1
m
(
N
m
)
68
65
67
eqtrd
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
∧
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
1
m
(
N
m
)
→
∫
0
1
x
m
+
1
-
1
1
−
x
N
−
m
+
1
d
x
=
m
N
−
m
1
m
(
N
m
)
69
61
62
63
lcmineqlem11
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
→
1
m
+
1
(
N
m
+
1
)
=
m
N
−
m
1
m
(
N
m
)
70
69
3adant3
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
∧
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
1
m
(
N
m
)
→
1
m
+
1
(
N
m
+
1
)
=
m
N
−
m
1
m
(
N
m
)
71
68
70
eqtr4d
⊢
φ
∧
m
∈
ℤ
∧
1
≤
m
∧
m
<
N
∧
∫
0
1
x
m
−
1
1
−
x
N
−
m
d
x
=
1
m
(
N
m
)
→
∫
0
1
x
m
+
1
-
1
1
−
x
N
−
m
+
1
d
x
=
1
m
+
1
(
N
m
+
1
)
72
1zzd
⊢
φ
→
1
∈
ℤ
73
3
nnzd
⊢
φ
→
N
∈
ℤ
74
3
nnge1d
⊢
φ
→
1
≤
N
75
20
32
44
56
57
71
72
73
74
fzindd
⊢
φ
∧
M
∈
ℤ
∧
1
≤
M
∧
M
≤
N
→
∫
0
1
x
M
−
1
1
−
x
N
−
M
d
x
=
1
M
(
N
M
)
76
8
75
mpdan
⊢
φ
→
∫
0
1
x
M
−
1
1
−
x
N
−
M
d
x
=
1
M
(
N
M
)
77
1
76
eqtrid
⊢
φ
→
F
=
1
M
(
N
M
)