Metamath Proof Explorer


Theorem lcmineqlem13

Description: Induction proof for lcm integral. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses lcmineqlem13.1 F=01xM11xNMdx
lcmineqlem13.2 φM
lcmineqlem13.3 φN
lcmineqlem13.4 φMN
Assertion lcmineqlem13 φF=1M(NM)

Proof

Step Hyp Ref Expression
1 lcmineqlem13.1 F=01xM11xNMdx
2 lcmineqlem13.2 φM
3 lcmineqlem13.3 φN
4 lcmineqlem13.4 φMN
5 2 nnzd φM
6 nnge1 M1M
7 2 6 syl φ1M
8 5 7 4 3jca φM1MMN
9 oveq1 i=1i1=11
10 9 oveq2d i=1xi1=x11
11 oveq2 i=1Ni=N1
12 11 oveq2d i=11xNi=1xN1
13 10 12 oveq12d i=1xi11xNi=x111xN1
14 13 adantr i=1x01xi11xNi=x111xN1
15 14 itgeq2dv i=101xi11xNidx=01x111xN1dx
16 id i=1i=1
17 oveq2 i=1(Ni)=(N1)
18 16 17 oveq12d i=1i(Ni)=1(N1)
19 18 oveq2d i=11i(Ni)=11(N1)
20 15 19 eqeq12d i=101xi11xNidx=1i(Ni)01x111xN1dx=11(N1)
21 oveq1 i=mi1=m1
22 21 oveq2d i=mxi1=xm1
23 oveq2 i=mNi=Nm
24 23 oveq2d i=m1xNi=1xNm
25 22 24 oveq12d i=mxi11xNi=xm11xNm
26 25 adantr i=mx01xi11xNi=xm11xNm
27 26 itgeq2dv i=m01xi11xNidx=01xm11xNmdx
28 id i=mi=m
29 oveq2 i=m(Ni)=(Nm)
30 28 29 oveq12d i=mi(Ni)=m(Nm)
31 30 oveq2d i=m1i(Ni)=1m(Nm)
32 27 31 eqeq12d i=m01xi11xNidx=1i(Ni)01xm11xNmdx=1m(Nm)
33 oveq1 i=m+1i1=m+1-1
34 33 oveq2d i=m+1xi1=xm+1-1
35 oveq2 i=m+1Ni=Nm+1
36 35 oveq2d i=m+11xNi=1xNm+1
37 34 36 oveq12d i=m+1xi11xNi=xm+1-11xNm+1
38 37 adantr i=m+1x01xi11xNi=xm+1-11xNm+1
39 38 itgeq2dv i=m+101xi11xNidx=01xm+1-11xNm+1dx
40 id i=m+1i=m+1
41 oveq2 i=m+1(Ni)=(Nm+1)
42 40 41 oveq12d i=m+1i(Ni)=m+1(Nm+1)
43 42 oveq2d i=m+11i(Ni)=1m+1(Nm+1)
44 39 43 eqeq12d i=m+101xi11xNidx=1i(Ni)01xm+1-11xNm+1dx=1m+1(Nm+1)
45 oveq1 i=Mi1=M1
46 45 oveq2d i=Mxi1=xM1
47 oveq2 i=MNi=NM
48 47 oveq2d i=M1xNi=1xNM
49 46 48 oveq12d i=Mxi11xNi=xM11xNM
50 49 adantr i=Mx01xi11xNi=xM11xNM
51 50 itgeq2dv i=M01xi11xNidx=01xM11xNMdx
52 id i=Mi=M
53 oveq2 i=M(Ni)=(NM)
54 52 53 oveq12d i=Mi(Ni)=M(NM)
55 54 oveq2d i=M1i(Ni)=1M(NM)
56 51 55 eqeq12d i=M01xi11xNidx=1i(Ni)01xM11xNMdx=1M(NM)
57 3 lcmineqlem12 φ01x111xN1dx=11(N1)
58 elnnz1 mm1m
59 58 biimpri m1mm
60 59 3adant3 m1mm<Nm
61 60 adantl φm1mm<Nm
62 3 adantr φm1mm<NN
63 simpr3 φm1mm<Nm<N
64 61 62 63 lcmineqlem10 φm1mm<N01xm+1-11xNm+1dx=mNm01xm11xNmdx
65 64 3adant3 φm1mm<N01xm11xNmdx=1m(Nm)01xm+1-11xNm+1dx=mNm01xm11xNmdx
66 oveq2 01xm11xNmdx=1m(Nm)mNm01xm11xNmdx=mNm1m(Nm)
67 66 3ad2ant3 φm1mm<N01xm11xNmdx=1m(Nm)mNm01xm11xNmdx=mNm1m(Nm)
68 65 67 eqtrd φm1mm<N01xm11xNmdx=1m(Nm)01xm+1-11xNm+1dx=mNm1m(Nm)
69 61 62 63 lcmineqlem11 φm1mm<N1m+1(Nm+1)=mNm1m(Nm)
70 69 3adant3 φm1mm<N01xm11xNmdx=1m(Nm)1m+1(Nm+1)=mNm1m(Nm)
71 68 70 eqtr4d φm1mm<N01xm11xNmdx=1m(Nm)01xm+1-11xNm+1dx=1m+1(Nm+1)
72 1zzd φ1
73 3 nnzd φN
74 3 nnge1d φ1N
75 20 32 44 56 57 71 72 73 74 fzindd φM1MMN01xM11xNMdx=1M(NM)
76 8 75 mpdan φ01xM11xNMdx=1M(NM)
77 1 76 eqtrid φF=1M(NM)