Metamath Proof Explorer


Theorem lcmineqlem17

Description: Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024)

Ref Expression
Hypothesis lcmineqlem17.1 φN0
Assertion lcmineqlem17 φ22 N2 N+1(2 NN)

Proof

Step Hyp Ref Expression
1 lcmineqlem17.1 φN0
2 2nn0 20
3 2 a1i φ20
4 3 1 nn0mulcld φ2 N0
5 binom11 2 N022 N=k=02 N(2 Nk)
6 4 5 syl φ22 N=k=02 N(2 Nk)
7 fzfid φ02 NFin
8 4 adantr φk02 N2 N0
9 elfzelz k02 Nk
10 9 adantl φk02 Nk
11 8 10 jca φk02 N2 N0k
12 bccl 2 N0k(2 Nk)0
13 11 12 syl φk02 N(2 Nk)0
14 13 nn0red φk02 N(2 Nk)
15 1 nn0zd φN
16 bccl 2 N0N(2 NN)0
17 4 15 16 syl2anc φ(2 NN)0
18 17 nn0red φ(2 NN)
19 18 adantr φk02 N(2 NN)
20 bcmax N0k(2 Nk)(2 NN)
21 1 9 20 syl2an φk02 N(2 Nk)(2 NN)
22 7 14 19 21 fsumle φk=02 N(2 Nk)k=02 N(2 NN)
23 6 22 eqbrtrd φ22 Nk=02 N(2 NN)
24 17 nn0cnd φ(2 NN)
25 fsumconst 02 NFin(2 NN)k=02 N(2 NN)=02 N(2 NN)
26 7 24 25 syl2anc φk=02 N(2 NN)=02 N(2 NN)
27 hashfz0 2 N002 N=2 N+1
28 4 27 syl φ02 N=2 N+1
29 28 oveq1d φ02 N(2 NN)=2 N+1(2 NN)
30 26 29 eqtrd φk=02 N(2 NN)=2 N+1(2 NN)
31 23 30 breqtrd φ22 N2 N+1(2 NN)