Description: Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lcmineqlem17.1 | |
|
Assertion | lcmineqlem17 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmineqlem17.1 | |
|
2 | 2nn0 | |
|
3 | 2 | a1i | |
4 | 3 1 | nn0mulcld | |
5 | binom11 | |
|
6 | 4 5 | syl | |
7 | fzfid | |
|
8 | 4 | adantr | |
9 | elfzelz | |
|
10 | 9 | adantl | |
11 | 8 10 | jca | |
12 | bccl | |
|
13 | 11 12 | syl | |
14 | 13 | nn0red | |
15 | 1 | nn0zd | |
16 | bccl | |
|
17 | 4 15 16 | syl2anc | |
18 | 17 | nn0red | |
19 | 18 | adantr | |
20 | bcmax | |
|
21 | 1 9 20 | syl2an | |
22 | 7 14 19 21 | fsumle | |
23 | 6 22 | eqbrtrd | |
24 | 17 | nn0cnd | |
25 | fsumconst | |
|
26 | 7 24 25 | syl2anc | |
27 | hashfz0 | |
|
28 | 4 27 | syl | |
29 | 28 | oveq1d | |
30 | 26 29 | eqtrd | |
31 | 23 30 | breqtrd | |