Metamath Proof Explorer


Theorem lcosn0

Description: Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019) (Revised by AV, 28-Jul-2019)

Ref Expression
Hypotheses lincval1.b B=BaseM
lincval1.s S=ScalarM
lincval1.r R=BaseS
lincval1.f F=V0S
Assertion lcosn0 MLModVBFRVfinSupp0SFFlinCMV=0M

Proof

Step Hyp Ref Expression
1 lincval1.b B=BaseM
2 lincval1.s S=ScalarM
3 lincval1.r R=BaseS
4 lincval1.f F=V0S
5 simpr MLModVBVB
6 eqid 0S=0S
7 2 3 6 lmod0cl MLMod0SR
8 7 adantr MLModVB0SR
9 3 fvexi RV
10 9 a1i MLModVBRV
11 4 mapsnop VB0SRRVFRV
12 5 8 10 11 syl3anc MLModVBFRV
13 elmapi FRVF:VR
14 12 13 syl MLModVBF:VR
15 snfi VFin
16 15 a1i MLModVBVFin
17 fvex 0SV
18 17 a1i MLModVB0SV
19 14 16 18 fdmfifsupp MLModVBfinSupp0SF
20 1 2 3 4 lincval1 MLModVBFlinCMV=0M
21 12 19 20 3jca MLModVBFRVfinSupp0SFFlinCMV=0M