Metamath Proof Explorer


Theorem lcvexchlem1

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S=LSubSpW
lcvexch.p ˙=LSSumW
lcvexch.c C=LW
lcvexch.w φWLMod
lcvexch.t φTS
lcvexch.u φUS
Assertion lcvexchlem1 φTT˙UTUU

Proof

Step Hyp Ref Expression
1 lcvexch.s S=LSubSpW
2 lcvexch.p ˙=LSSumW
3 lcvexch.c C=LW
4 lcvexch.w φWLMod
5 lcvexch.t φTS
6 lcvexch.u φUS
7 1 lsssssubg WLModSSubGrpW
8 4 7 syl φSSubGrpW
9 8 5 sseldd φTSubGrpW
10 8 6 sseldd φUSubGrpW
11 2 lsmub1 TSubGrpWUSubGrpWTT˙U
12 9 10 11 syl2anc φTT˙U
13 inss2 TUU
14 13 a1i φTUU
15 12 14 2thd φTT˙UTUU
16 2 lsmss2b TSubGrpWUSubGrpWUTT˙U=T
17 9 10 16 syl2anc φUTT˙U=T
18 eqcom T˙U=TT=T˙U
19 17 18 bitrdi φUTT=T˙U
20 sseqin2 UTTU=U
21 19 20 bitr3di φT=T˙UTU=U
22 21 necon3bid φTT˙UTUU
23 15 22 anbi12d φTT˙UTT˙UTUUTUU
24 df-pss TT˙UTT˙UTT˙U
25 df-pss TUUTUUTUU
26 23 24 25 3bitr4g φTT˙UTUU