Metamath Proof Explorer


Theorem lcvexchlem2

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S=LSubSpW
lcvexch.p ˙=LSSumW
lcvexch.c C=LW
lcvexch.w φWLMod
lcvexch.t φTS
lcvexch.u φUS
lcvexch.r φRS
lcvexch.a φTUR
lcvexch.b φRU
Assertion lcvexchlem2 φR˙TU=R

Proof

Step Hyp Ref Expression
1 lcvexch.s S=LSubSpW
2 lcvexch.p ˙=LSSumW
3 lcvexch.c C=LW
4 lcvexch.w φWLMod
5 lcvexch.t φTS
6 lcvexch.u φUS
7 lcvexch.r φRS
8 lcvexch.a φTUR
9 lcvexch.b φRU
10 1 lsssssubg WLModSSubGrpW
11 4 10 syl φSSubGrpW
12 11 7 sseldd φRSubGrpW
13 11 5 sseldd φTSubGrpW
14 11 6 sseldd φUSubGrpW
15 2 lsmmod RSubGrpWTSubGrpWUSubGrpWRUR˙TU=R˙TU
16 12 13 14 9 15 syl31anc φR˙TU=R˙TU
17 1 lssincl WLModTSUSTUS
18 4 5 6 17 syl3anc φTUS
19 11 18 sseldd φTUSubGrpW
20 2 lsmss2 RSubGrpWTUSubGrpWTURR˙TU=R
21 12 19 8 20 syl3anc φR˙TU=R
22 16 21 eqtr3d φR˙TU=R