Metamath Proof Explorer


Theorem lcvexchlem3

Description: Lemma for lcvexch . (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S=LSubSpW
lcvexch.p ˙=LSSumW
lcvexch.c C=LW
lcvexch.w φWLMod
lcvexch.t φTS
lcvexch.u φUS
lcvexch.q φRS
lcvexch.d φTR
lcvexch.e φRT˙U
Assertion lcvexchlem3 φRU˙T=R

Proof

Step Hyp Ref Expression
1 lcvexch.s S=LSubSpW
2 lcvexch.p ˙=LSSumW
3 lcvexch.c C=LW
4 lcvexch.w φWLMod
5 lcvexch.t φTS
6 lcvexch.u φUS
7 lcvexch.q φRS
8 lcvexch.d φTR
9 lcvexch.e φRT˙U
10 1 lsssssubg WLModSSubGrpW
11 4 10 syl φSSubGrpW
12 11 7 sseldd φRSubGrpW
13 11 6 sseldd φUSubGrpW
14 11 5 sseldd φTSubGrpW
15 2 lsmmod2 RSubGrpWUSubGrpWTSubGrpWTRRU˙T=RU˙T
16 12 13 14 8 15 syl31anc φRU˙T=RU˙T
17 lmodabl WLModWAbel
18 4 17 syl φWAbel
19 2 lsmcom WAbelTSubGrpWUSubGrpWT˙U=U˙T
20 18 14 13 19 syl3anc φT˙U=U˙T
21 9 20 sseqtrd φRU˙T
22 df-ss RU˙TRU˙T=R
23 21 22 sylib φRU˙T=R
24 16 23 eqtr3d φRU˙T=R