Metamath Proof Explorer


Theorem ldual1dim

Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014)

Ref Expression
Hypotheses ldual1dim.f F=LFnlW
ldual1dim.l L=LKerW
ldual1dim.d D=LDualW
ldual1dim.n N=LSpanD
ldual1dim.w φWLVec
ldual1dim.g φGF
Assertion ldual1dim φNG=gF|LGLg

Proof

Step Hyp Ref Expression
1 ldual1dim.f F=LFnlW
2 ldual1dim.l L=LKerW
3 ldual1dim.d D=LDualW
4 ldual1dim.n N=LSpanD
5 ldual1dim.w φWLVec
6 ldual1dim.g φGF
7 eqid ScalarW=ScalarW
8 eqid BaseScalarW=BaseScalarW
9 eqid ScalarD=ScalarD
10 eqid BaseScalarD=BaseScalarD
11 7 8 3 9 10 5 ldualsbase φBaseScalarD=BaseScalarW
12 11 eleq2d φkBaseScalarDkBaseScalarW
13 12 anbi1d φkBaseScalarDg=kDGkBaseScalarWg=kDG
14 eqid BaseW=BaseW
15 eqid ScalarW=ScalarW
16 eqid D=D
17 5 adantr φkBaseScalarWWLVec
18 simpr φkBaseScalarWkBaseScalarW
19 6 adantr φkBaseScalarWGF
20 1 14 7 8 15 3 16 17 18 19 ldualvs φkBaseScalarWkDG=GScalarWfBaseW×k
21 20 eqeq2d φkBaseScalarWg=kDGg=GScalarWfBaseW×k
22 21 pm5.32da φkBaseScalarWg=kDGkBaseScalarWg=GScalarWfBaseW×k
23 13 22 bitrd φkBaseScalarDg=kDGkBaseScalarWg=GScalarWfBaseW×k
24 23 rexbidv2 φkBaseScalarDg=kDGkBaseScalarWg=GScalarWfBaseW×k
25 24 abbidv φg|kBaseScalarDg=kDG=g|kBaseScalarWg=GScalarWfBaseW×k
26 lveclmod WLVecWLMod
27 3 26 lduallmod WLVecDLMod
28 5 27 syl φDLMod
29 eqid BaseD=BaseD
30 1 3 29 5 6 ldualelvbase φGBaseD
31 9 10 29 16 4 lspsn DLModGBaseDNG=g|kBaseScalarDg=kDG
32 28 30 31 syl2anc φNG=g|kBaseScalarDg=kDG
33 14 7 1 2 8 15 5 6 lfl1dim φgF|LGLg=g|kBaseScalarWg=GScalarWfBaseW×k
34 25 32 33 3eqtr4d φNG=gF|LGLg