Metamath Proof Explorer


Theorem ledivp1i

Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005)

Ref Expression
Hypotheses ltplus1.1 A
prodgt0.2 B
ltmul1.3 C
Assertion ledivp1i 0A0CABC+1ACB

Proof

Step Hyp Ref Expression
1 ltplus1.1 A
2 prodgt0.2 B
3 ltmul1.3 C
4 1re 1
5 3 4 readdcli C+1
6 3 ltp1i C<C+1
7 3 5 6 ltleii CC+1
8 lemul2a CC+1A0ACC+1ACAC+1
9 7 8 mpan2 CC+1A0AACAC+1
10 3 5 9 mp3an12 A0AACAC+1
11 1 10 mpan 0AACAC+1
12 11 3ad2ant1 0A0CABC+1ACAC+1
13 0re 0
14 13 3 5 lelttri 0CC<C+10<C+1
15 6 14 mpan2 0C0<C+1
16 5 gt0ne0i 0<C+1C+10
17 2 5 redivclzi C+10BC+1
18 16 17 syl 0<C+1BC+1
19 lemul1 ABC+1C+10<C+1ABC+1AC+1BC+1C+1
20 1 19 mp3an1 BC+1C+10<C+1ABC+1AC+1BC+1C+1
21 20 ex BC+1C+10<C+1ABC+1AC+1BC+1C+1
22 5 21 mpani BC+10<C+1ABC+1AC+1BC+1C+1
23 18 22 mpcom 0<C+1ABC+1AC+1BC+1C+1
24 23 biimpd 0<C+1ABC+1AC+1BC+1C+1
25 15 24 syl 0CABC+1AC+1BC+1C+1
26 25 imp 0CABC+1AC+1BC+1C+1
27 2 recni B
28 5 recni C+1
29 27 28 divcan1zi C+10BC+1C+1=B
30 15 16 29 3syl 0CBC+1C+1=B
31 30 adantr 0CABC+1BC+1C+1=B
32 26 31 breqtrd 0CABC+1AC+1B
33 32 3adant1 0A0CABC+1AC+1B
34 1 3 remulcli AC
35 1 5 remulcli AC+1
36 34 35 2 letri ACAC+1AC+1BACB
37 12 33 36 syl2anc 0A0CABC+1ACB