Metamath Proof Explorer


Theorem leexp2a

Description: Weak ordering relationship for exponentiation of a fixed real base greater than or equal to 1 to integer exponents. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion leexp2a A1ANMAMAN

Proof

Step Hyp Ref Expression
1 simp1 A1ANMA
2 0red A1ANM0
3 1red A1ANM1
4 0lt1 0<1
5 4 a1i A1ANM0<1
6 simp2 A1ANM1A
7 2 3 1 5 6 ltletrd A1ANM0<A
8 1 7 elrpd A1ANMA+
9 eluzel2 NMM
10 9 3ad2ant3 A1ANMM
11 rpexpcl A+MAM+
12 8 10 11 syl2anc A1ANMAM+
13 12 rpred A1ANMAM
14 13 recnd A1ANMAM
15 14 mullidd A1ANM1AM=AM
16 uznn0sub NMNM0
17 16 3ad2ant3 A1ANMNM0
18 expge1 ANM01A1ANM
19 1 17 6 18 syl3anc A1ANM1ANM
20 1 recnd A1ANMA
21 7 gt0ne0d A1ANMA0
22 eluzelz NMN
23 22 3ad2ant3 A1ANMN
24 expsub AA0NMANM=ANAM
25 20 21 23 10 24 syl22anc A1ANMANM=ANAM
26 19 25 breqtrd A1ANM1ANAM
27 rpexpcl A+NAN+
28 8 23 27 syl2anc A1ANMAN+
29 28 rpred A1ANMAN
30 3 29 12 lemuldivd A1ANM1AMAN1ANAM
31 26 30 mpbird A1ANM1AMAN
32 15 31 eqbrtrrd A1ANMAMAN