Metamath Proof Explorer


Theorem legso

Description: The "shorter than" relation induces an order on pairs. Remark 5.13 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p P=BaseG
legval.d -˙=distG
legval.i I=ItvG
legval.l ˙=𝒢G
legval.g φG𝒢Tarski
legso.a E=-˙P×P
legso.f φFun-˙
legso.l <˙=˙EI
legso.d φP×Pdom-˙
Assertion legso φ<˙OrE

Proof

Step Hyp Ref Expression
1 legval.p P=BaseG
2 legval.d -˙=distG
3 legval.i I=ItvG
4 legval.l ˙=𝒢G
5 legval.g φG𝒢Tarski
6 legso.a E=-˙P×P
7 legso.f φFun-˙
8 legso.l <˙=˙EI
9 legso.d φP×Pdom-˙
10 neirr ¬x-˙yx-˙y
11 10 intnan ¬x-˙y˙x-˙yx-˙yx-˙y
12 5 adantr φaEG𝒢Tarski
13 12 ad3antrrr φaExPyPa=x-˙yG𝒢Tarski
14 7 adantr φaEFun-˙
15 14 ad3antrrr φaExPyPa=x-˙yFun-˙
16 9 ad4antr φaExPyPa=x-˙yP×Pdom-˙
17 simpllr φaExPyPa=x-˙yxP
18 simplr φaExPyPa=x-˙yyP
19 1 2 3 4 13 6 15 8 16 17 18 ltgov φaExPyPa=x-˙yx-˙y<˙x-˙yx-˙y˙x-˙yx-˙yx-˙y
20 11 19 mtbiri φaExPyPa=x-˙y¬x-˙y<˙x-˙y
21 simpr φaExPyPa=x-˙ya=x-˙y
22 21 21 breq12d φaExPyPa=x-˙ya<˙ax-˙y<˙x-˙y
23 20 22 mtbird φaExPyPa=x-˙y¬a<˙a
24 simpr φaEaE
25 1 2 3 4 12 6 14 24 ltgseg φaExPyPa=x-˙y
26 23 25 r19.29vva φaE¬a<˙a
27 5 ad8antr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tG𝒢Tarski
28 27 ad3antrrr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vG𝒢Tarski
29 simp-9r φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vxP
30 simp-8r φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vyP
31 simp-6r φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vzP
32 simp-5r φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vtP
33 simpllr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vuP
34 simplr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vvP
35 simp-10r φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙va<˙bb<˙c
36 35 simpld φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙va<˙b
37 simp-7r φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙va=x-˙y
38 simp-4r φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vb=z-˙t
39 36 37 38 3brtr3d φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y<˙z-˙t
40 7 ad8antr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tFun-˙
41 40 ad3antrrr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vFun-˙
42 9 ad8antr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tP×Pdom-˙
43 42 ad3antrrr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vP×Pdom-˙
44 1 2 3 4 28 6 41 8 43 29 30 ltgov φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y<˙z-˙tx-˙y˙z-˙tx-˙yz-˙t
45 39 44 mpbid φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y˙z-˙tx-˙yz-˙t
46 45 simpld φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y˙z-˙t
47 35 simprd φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vb<˙c
48 simpr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vc=u-˙v
49 47 38 48 3brtr3d φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vz-˙t<˙u-˙v
50 1 2 3 4 28 6 41 8 43 31 32 ltgov φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vz-˙t<˙u-˙vz-˙t˙u-˙vz-˙tu-˙v
51 49 50 mpbid φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vz-˙t˙u-˙vz-˙tu-˙v
52 51 simpld φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vz-˙t˙u-˙v
53 1 2 3 4 28 29 30 31 32 33 34 46 52 legtrd φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y˙u-˙v
54 28 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vG𝒢Tarski
55 29 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vxP
56 30 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vyP
57 31 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vzP
58 32 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vtP
59 46 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vx-˙y˙z-˙t
60 52 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vz-˙t˙u-˙v
61 simpr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vx-˙y=u-˙v
62 60 61 breqtrrd φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vz-˙t˙x-˙y
63 1 2 3 4 54 55 56 57 58 59 62 legtri3 φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vx-˙y=z-˙t
64 45 simprd φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙yz-˙t
65 64 adantr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙vx-˙yz-˙t
66 65 neneqd φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y=u-˙v¬x-˙y=z-˙t
67 63 66 pm2.65da φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙v¬x-˙y=u-˙v
68 67 neqned φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙yu-˙v
69 1 2 3 4 28 6 41 8 43 29 30 ltgov φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y<˙u-˙vx-˙y˙u-˙vx-˙yu-˙v
70 53 68 69 mpbir2and φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙vx-˙y<˙u-˙v
71 70 37 48 3brtr4d φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙va<˙c
72 simp-5r φaEbEcEa<˙bb<˙cxPyPa=x-˙yaEbEcE
73 72 simp3d φaEbEcEa<˙bb<˙cxPyPa=x-˙ycE
74 73 ad3antrrr φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tcE
75 1 2 3 4 27 6 40 74 ltgseg φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙tuPvPc=u-˙v
76 71 75 r19.29vva φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙ta<˙c
77 5 ad5antr φaEbEcEa<˙bb<˙cxPyPa=x-˙yG𝒢Tarski
78 7 ad5antr φaEbEcEa<˙bb<˙cxPyPa=x-˙yFun-˙
79 72 simp2d φaEbEcEa<˙bb<˙cxPyPa=x-˙ybE
80 1 2 3 4 77 6 78 79 ltgseg φaEbEcEa<˙bb<˙cxPyPa=x-˙yzPtPb=z-˙t
81 76 80 r19.29vva φaEbEcEa<˙bb<˙cxPyPa=x-˙ya<˙c
82 5 ad2antrr φaEbEcEa<˙bb<˙cG𝒢Tarski
83 7 ad2antrr φaEbEcEa<˙bb<˙cFun-˙
84 simplr1 φaEbEcEa<˙bb<˙caE
85 1 2 3 4 82 6 83 84 ltgseg φaEbEcEa<˙bb<˙cxPyPa=x-˙y
86 81 85 r19.29vva φaEbEcEa<˙bb<˙ca<˙c
87 86 ex φaEbEcEa<˙bb<˙ca<˙c
88 26 87 ispod φ<˙PoE
89 5 ad8antr φaEbExPyPa=x-˙yzPtPb=z-˙tG𝒢Tarski
90 simp-6r φaEbExPyPa=x-˙yzPtPb=z-˙txP
91 simp-5r φaEbExPyPa=x-˙yzPtPb=z-˙tyP
92 simpllr φaEbExPyPa=x-˙yzPtPb=z-˙tzP
93 simplr φaEbExPyPa=x-˙yzPtPb=z-˙ttP
94 1 2 3 4 89 90 91 92 93 legtrid φaEbExPyPa=x-˙yzPtPb=z-˙tx-˙y˙z-˙tz-˙t˙x-˙y
95 7 ad8antr φaEbExPyPa=x-˙yzPtPb=z-˙tFun-˙
96 9 ad8antr φaEbExPyPa=x-˙yzPtPb=z-˙tP×Pdom-˙
97 1 2 3 4 89 6 95 8 96 90 91 legov3 φaEbExPyPa=x-˙yzPtPb=z-˙tx-˙y˙z-˙tx-˙y<˙z-˙tx-˙y=z-˙t
98 1 2 3 4 89 6 95 8 96 92 93 legov3 φaEbExPyPa=x-˙yzPtPb=z-˙tz-˙t˙x-˙yz-˙t<˙x-˙yz-˙t=x-˙y
99 97 98 orbi12d φaEbExPyPa=x-˙yzPtPb=z-˙tx-˙y˙z-˙tz-˙t˙x-˙yx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙yz-˙t=x-˙y
100 94 99 mpbid φaEbExPyPa=x-˙yzPtPb=z-˙tx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙yz-˙t=x-˙y
101 eqcom x-˙y=z-˙tz-˙t=x-˙y
102 101 orbi2i z-˙t<˙x-˙yx-˙y=z-˙tz-˙t<˙x-˙yz-˙t=x-˙y
103 102 orbi2i x-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙yx-˙y=z-˙tx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙yz-˙t=x-˙y
104 df-3or x-˙y<˙z-˙tz-˙t<˙x-˙yx-˙y=z-˙tx-˙y<˙z-˙tz-˙t<˙x-˙yx-˙y=z-˙t
105 3orcomb x-˙y<˙z-˙tz-˙t<˙x-˙yx-˙y=z-˙tx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙y
106 orordir x-˙y<˙z-˙tz-˙t<˙x-˙yx-˙y=z-˙tx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙yx-˙y=z-˙t
107 104 105 106 3bitr3ri x-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙yx-˙y=z-˙tx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙y
108 103 107 bitr3i x-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙yz-˙t=x-˙yx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙y
109 100 108 sylib φaEbExPyPa=x-˙yzPtPb=z-˙tx-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙y
110 simp-4r φaEbExPyPa=x-˙yzPtPb=z-˙ta=x-˙y
111 simpr φaEbExPyPa=x-˙yzPtPb=z-˙tb=z-˙t
112 110 111 breq12d φaEbExPyPa=x-˙yzPtPb=z-˙ta<˙bx-˙y<˙z-˙t
113 110 111 eqeq12d φaEbExPyPa=x-˙yzPtPb=z-˙ta=bx-˙y=z-˙t
114 111 110 breq12d φaEbExPyPa=x-˙yzPtPb=z-˙tb<˙az-˙t<˙x-˙y
115 112 113 114 3orbi123d φaEbExPyPa=x-˙yzPtPb=z-˙ta<˙ba=bb<˙ax-˙y<˙z-˙tx-˙y=z-˙tz-˙t<˙x-˙y
116 109 115 mpbird φaEbExPyPa=x-˙yzPtPb=z-˙ta<˙ba=bb<˙a
117 5 ad2antrr φaEbEG𝒢Tarski
118 7 ad2antrr φaEbEFun-˙
119 simpr φaEbEbE
120 1 2 3 4 117 6 118 119 ltgseg φaEbEzPtPb=z-˙t
121 120 ad3antrrr φaEbExPyPa=x-˙yzPtPb=z-˙t
122 116 121 r19.29vva φaEbExPyPa=x-˙ya<˙ba=bb<˙a
123 25 adantr φaEbExPyPa=x-˙y
124 122 123 r19.29vva φaEbEa<˙ba=bb<˙a
125 124 anasss φaEbEa<˙ba=bb<˙a
126 88 125 issod φ<˙OrE