| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
|
| 2 |
|
legval.d |
|
| 3 |
|
legval.i |
|
| 4 |
|
legval.l |
|
| 5 |
|
legval.g |
|
| 6 |
|
legid.a |
|
| 7 |
|
legid.b |
|
| 8 |
|
legtrd.c |
|
| 9 |
|
legtrd.d |
|
| 10 |
5
|
adantr |
|
| 11 |
6
|
adantr |
|
| 12 |
7
|
adantr |
|
| 13 |
1 2 3 4 10 11 12
|
legid |
|
| 14 |
8
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
9
|
adantr |
|
| 17 |
1 2 3 10 11 12 14 15 16
|
tgldim0cgr |
|
| 18 |
13 17
|
breqtrd |
|
| 19 |
18
|
orcd |
|
| 20 |
5
|
ad3antrrr |
|
| 21 |
|
simplr |
|
| 22 |
21
|
adantr |
|
| 23 |
6
|
ad3antrrr |
|
| 24 |
7
|
ad3antrrr |
|
| 25 |
|
simprl |
|
| 26 |
|
simplrr |
|
| 27 |
26
|
necomd |
|
| 28 |
|
simplrl |
|
| 29 |
1 2 3 20 24 23 22 28
|
tgbtwncom |
|
| 30 |
|
simprrl |
|
| 31 |
1 3 20 22 23 24 25 27 29 30
|
tgbtwnconn2 |
|
| 32 |
|
simprrr |
|
| 33 |
31 32
|
jca |
|
| 34 |
5
|
ad2antrr |
|
| 35 |
6
|
ad2antrr |
|
| 36 |
8
|
ad2antrr |
|
| 37 |
9
|
ad2antrr |
|
| 38 |
1 2 3 34 21 35 36 37
|
axtgsegcon |
|
| 39 |
33 38
|
reximddv |
|
| 40 |
39
|
adantllr |
|
| 41 |
5
|
adantr |
|
| 42 |
7
|
adantr |
|
| 43 |
6
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
1 2 3 41 42 43 44
|
tgbtwndiff |
|
| 46 |
40 45
|
r19.29a |
|
| 47 |
|
andir |
|
| 48 |
|
eqcom |
|
| 49 |
48
|
anbi2i |
|
| 50 |
49
|
orbi2i |
|
| 51 |
47 50
|
bitri |
|
| 52 |
51
|
rexbii |
|
| 53 |
|
r19.43 |
|
| 54 |
52 53
|
bitri |
|
| 55 |
46 54
|
sylib |
|
| 56 |
1 2 3 4 5 6 7 8 9
|
legov2 |
|
| 57 |
1 2 3 4 5 8 9 6 7
|
legov |
|
| 58 |
56 57
|
orbi12d |
|
| 59 |
58
|
adantr |
|
| 60 |
55 59
|
mpbird |
|
| 61 |
1 6
|
tgldimor |
|
| 62 |
19 60 61
|
mpjaodan |
|