Metamath Proof Explorer


Theorem legtrid

Description: Trichotomy law for the less-than relationship. Proposition 5.10 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p P=BaseG
legval.d -˙=distG
legval.i I=ItvG
legval.l ˙=𝒢G
legval.g φG𝒢Tarski
legid.a φAP
legid.b φBP
legtrd.c φCP
legtrd.d φDP
Assertion legtrid φA-˙B˙C-˙DC-˙D˙A-˙B

Proof

Step Hyp Ref Expression
1 legval.p P=BaseG
2 legval.d -˙=distG
3 legval.i I=ItvG
4 legval.l ˙=𝒢G
5 legval.g φG𝒢Tarski
6 legid.a φAP
7 legid.b φBP
8 legtrd.c φCP
9 legtrd.d φDP
10 5 adantr φP=1G𝒢Tarski
11 6 adantr φP=1AP
12 7 adantr φP=1BP
13 1 2 3 4 10 11 12 legid φP=1A-˙B˙A-˙B
14 8 adantr φP=1CP
15 simpr φP=1P=1
16 9 adantr φP=1DP
17 1 2 3 10 11 12 14 15 16 tgldim0cgr φP=1A-˙B=C-˙D
18 13 17 breqtrd φP=1A-˙B˙C-˙D
19 18 orcd φP=1A-˙B˙C-˙DC-˙D˙A-˙B
20 5 ad3antrrr φxPABIxAxyPAxIyA-˙y=C-˙DG𝒢Tarski
21 simplr φxPABIxAxxP
22 21 adantr φxPABIxAxyPAxIyA-˙y=C-˙DxP
23 6 ad3antrrr φxPABIxAxyPAxIyA-˙y=C-˙DAP
24 7 ad3antrrr φxPABIxAxyPAxIyA-˙y=C-˙DBP
25 simprl φxPABIxAxyPAxIyA-˙y=C-˙DyP
26 simplrr φxPABIxAxyPAxIyA-˙y=C-˙DAx
27 26 necomd φxPABIxAxyPAxIyA-˙y=C-˙DxA
28 simplrl φxPABIxAxyPAxIyA-˙y=C-˙DABIx
29 1 2 3 20 24 23 22 28 tgbtwncom φxPABIxAxyPAxIyA-˙y=C-˙DAxIB
30 simprrl φxPABIxAxyPAxIyA-˙y=C-˙DAxIy
31 1 3 20 22 23 24 25 27 29 30 tgbtwnconn2 φxPABIxAxyPAxIyA-˙y=C-˙DBAIyyAIB
32 simprrr φxPABIxAxyPAxIyA-˙y=C-˙DA-˙y=C-˙D
33 31 32 jca φxPABIxAxyPAxIyA-˙y=C-˙DBAIyyAIBA-˙y=C-˙D
34 5 ad2antrr φxPABIxAxG𝒢Tarski
35 6 ad2antrr φxPABIxAxAP
36 8 ad2antrr φxPABIxAxCP
37 9 ad2antrr φxPABIxAxDP
38 1 2 3 34 21 35 36 37 axtgsegcon φxPABIxAxyPAxIyA-˙y=C-˙D
39 33 38 reximddv φxPABIxAxyPBAIyyAIBA-˙y=C-˙D
40 39 adantllr φ2PxPABIxAxyPBAIyyAIBA-˙y=C-˙D
41 5 adantr φ2PG𝒢Tarski
42 7 adantr φ2PBP
43 6 adantr φ2PAP
44 simpr φ2P2P
45 1 2 3 41 42 43 44 tgbtwndiff φ2PxPABIxAx
46 40 45 r19.29a φ2PyPBAIyyAIBA-˙y=C-˙D
47 andir BAIyyAIBA-˙y=C-˙DBAIyA-˙y=C-˙DyAIBA-˙y=C-˙D
48 eqcom A-˙y=C-˙DC-˙D=A-˙y
49 48 anbi2i yAIBA-˙y=C-˙DyAIBC-˙D=A-˙y
50 49 orbi2i BAIyA-˙y=C-˙DyAIBA-˙y=C-˙DBAIyA-˙y=C-˙DyAIBC-˙D=A-˙y
51 47 50 bitri BAIyyAIBA-˙y=C-˙DBAIyA-˙y=C-˙DyAIBC-˙D=A-˙y
52 51 rexbii yPBAIyyAIBA-˙y=C-˙DyPBAIyA-˙y=C-˙DyAIBC-˙D=A-˙y
53 r19.43 yPBAIyA-˙y=C-˙DyAIBC-˙D=A-˙yyPBAIyA-˙y=C-˙DyPyAIBC-˙D=A-˙y
54 52 53 bitri yPBAIyyAIBA-˙y=C-˙DyPBAIyA-˙y=C-˙DyPyAIBC-˙D=A-˙y
55 46 54 sylib φ2PyPBAIyA-˙y=C-˙DyPyAIBC-˙D=A-˙y
56 1 2 3 4 5 6 7 8 9 legov2 φA-˙B˙C-˙DyPBAIyA-˙y=C-˙D
57 1 2 3 4 5 8 9 6 7 legov φC-˙D˙A-˙ByPyAIBC-˙D=A-˙y
58 56 57 orbi12d φA-˙B˙C-˙DC-˙D˙A-˙ByPBAIyA-˙y=C-˙DyPyAIBC-˙D=A-˙y
59 58 adantr φ2PA-˙B˙C-˙DC-˙D˙A-˙ByPBAIyA-˙y=C-˙DyPyAIBC-˙D=A-˙y
60 55 59 mpbird φ2PA-˙B˙C-˙DC-˙D˙A-˙B
61 1 6 tgldimor φP=12P
62 19 60 61 mpjaodan φA-˙B˙C-˙DC-˙D˙A-˙B