Metamath Proof Explorer


Theorem lflnegl

Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp , and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lflnegcl.v V = Base W
lflnegcl.r R = Scalar W
lflnegcl.i I = inv g R
lflnegcl.n N = x V I G x
lflnegcl.f F = LFnl W
lflnegcl.w φ W LMod
lflnegcl.g φ G F
lflnegl.p + ˙ = + R
lflnegl.o 0 ˙ = 0 R
Assertion lflnegl φ N + ˙ f G = V × 0 ˙

Proof

Step Hyp Ref Expression
1 lflnegcl.v V = Base W
2 lflnegcl.r R = Scalar W
3 lflnegcl.i I = inv g R
4 lflnegcl.n N = x V I G x
5 lflnegcl.f F = LFnl W
6 lflnegcl.w φ W LMod
7 lflnegcl.g φ G F
8 lflnegl.p + ˙ = + R
9 lflnegl.o 0 ˙ = 0 R
10 1 fvexi V V
11 10 a1i φ V V
12 eqid Base R = Base R
13 2 12 1 5 lflf W LMod G F G : V Base R
14 6 7 13 syl2anc φ G : V Base R
15 9 fvexi 0 ˙ V
16 15 a1i φ 0 ˙ V
17 2 lmodring W LMod R Ring
18 ringgrp R Ring R Grp
19 6 17 18 3syl φ R Grp
20 12 3 19 grpinvf1o φ I : Base R 1-1 onto Base R
21 f1of I : Base R 1-1 onto Base R I : Base R Base R
22 20 21 syl φ I : Base R Base R
23 4 a1i φ N = x V I G x
24 12 8 9 3 grplinv R Grp y Base R I y + ˙ y = 0 ˙
25 19 24 sylan φ y Base R I y + ˙ y = 0 ˙
26 11 14 16 22 23 25 caofinvl φ N + ˙ f G = V × 0 ˙