Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp , and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lflnegcl.v | |
|
lflnegcl.r | |
||
lflnegcl.i | |
||
lflnegcl.n | |
||
lflnegcl.f | |
||
lflnegcl.w | |
||
lflnegcl.g | |
||
lflnegl.p | |
||
lflnegl.o | |
||
Assertion | lflnegl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflnegcl.v | |
|
2 | lflnegcl.r | |
|
3 | lflnegcl.i | |
|
4 | lflnegcl.n | |
|
5 | lflnegcl.f | |
|
6 | lflnegcl.w | |
|
7 | lflnegcl.g | |
|
8 | lflnegl.p | |
|
9 | lflnegl.o | |
|
10 | 1 | fvexi | |
11 | 10 | a1i | |
12 | eqid | |
|
13 | 2 12 1 5 | lflf | |
14 | 6 7 13 | syl2anc | |
15 | 9 | fvexi | |
16 | 15 | a1i | |
17 | 2 | lmodring | |
18 | ringgrp | |
|
19 | 6 17 18 | 3syl | |
20 | 12 3 19 | grpinvf1o | |
21 | f1of | |
|
22 | 20 21 | syl | |
23 | 4 | a1i | |
24 | 12 8 9 3 | grplinv | |
25 | 19 24 | sylan | |
26 | 11 14 16 22 23 25 | caofinvl | |