Metamath Proof Explorer


Theorem lflnegl

Description: A functional plus its negative is the zero functional. (This is specialized for the purpose of proving ldualgrp , and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lflnegcl.v V=BaseW
lflnegcl.r R=ScalarW
lflnegcl.i I=invgR
lflnegcl.n N=xVIGx
lflnegcl.f F=LFnlW
lflnegcl.w φWLMod
lflnegcl.g φGF
lflnegl.p +˙=+R
lflnegl.o 0˙=0R
Assertion lflnegl φN+˙fG=V×0˙

Proof

Step Hyp Ref Expression
1 lflnegcl.v V=BaseW
2 lflnegcl.r R=ScalarW
3 lflnegcl.i I=invgR
4 lflnegcl.n N=xVIGx
5 lflnegcl.f F=LFnlW
6 lflnegcl.w φWLMod
7 lflnegcl.g φGF
8 lflnegl.p +˙=+R
9 lflnegl.o 0˙=0R
10 1 fvexi VV
11 10 a1i φVV
12 eqid BaseR=BaseR
13 2 12 1 5 lflf WLModGFG:VBaseR
14 6 7 13 syl2anc φG:VBaseR
15 9 fvexi 0˙V
16 15 a1i φ0˙V
17 2 lmodring WLModRRing
18 ringgrp RRingRGrp
19 6 17 18 3syl φRGrp
20 12 3 19 grpinvf1o φI:BaseR1-1 ontoBaseR
21 f1of I:BaseR1-1 ontoBaseRI:BaseRBaseR
22 20 21 syl φI:BaseRBaseR
23 4 a1i φN=xVIGx
24 12 8 9 3 grplinv RGrpyBaseRIy+˙y=0˙
25 19 24 sylan φyBaseRIy+˙y=0˙
26 11 14 16 22 23 25 caofinvl φN+˙fG=V×0˙