Metamath Proof Explorer


Theorem lgsval4a

Description: Same as lgsval4 for positive N . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval4.1 F=nifnA/LnnpCntN1
Assertion lgsval4a ANA/LN=seq1×FN

Proof

Step Hyp Ref Expression
1 lgsval4.1 F=nifnA/LnnpCntN1
2 simpl ANA
3 nnz NN
4 3 adantl ANN
5 nnne0 NN0
6 5 adantl ANN0
7 1 lgsval4 ANN0A/LN=ifN<0A<011seq1×FN
8 2 4 6 7 syl3anc ANA/LN=ifN<0A<011seq1×FN
9 nngt0 N0<N
10 9 adantl AN0<N
11 0re 0
12 nnre NN
13 12 adantl ANN
14 ltnsym 0N0<N¬N<0
15 11 13 14 sylancr AN0<N¬N<0
16 10 15 mpd AN¬N<0
17 16 intnanrd AN¬N<0A<0
18 17 iffalsed ANifN<0A<011=1
19 nnnn0 NN0
20 19 adantl ANN0
21 20 nn0ge0d AN0N
22 13 21 absidd ANN=N
23 22 fveq2d ANseq1×FN=seq1×FN
24 18 23 oveq12d ANifN<0A<011seq1×FN=1seq1×FN
25 simpr ANN
26 nnuz =1
27 25 26 eleqtrdi ANN1
28 1 lgsfcl3 ANN0F:
29 2 4 6 28 syl3anc ANF:
30 elfznn x1Nx
31 ffvelcdm F:xFx
32 29 30 31 syl2an ANx1NFx
33 zmulcl xyxy
34 33 adantl ANxyxy
35 27 32 34 seqcl ANseq1×FN
36 35 zcnd ANseq1×FN
37 36 mullidd AN1seq1×FN=seq1×FN
38 8 24 37 3eqtrd ANA/LN=seq1×FN