| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhpex1.l |  | 
						
							| 2 |  | lhpex1.a |  | 
						
							| 3 |  | lhpex1.h |  | 
						
							| 4 |  | simpl1 |  | 
						
							| 5 | 1 2 3 | lhpexle2 |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 |  | simp31 |  | 
						
							| 8 |  | simp32 |  | 
						
							| 9 |  | simp1r |  | 
						
							| 10 | 8 9 | neeqtrd |  | 
						
							| 11 |  | simp33 |  | 
						
							| 12 | 8 10 11 | 3jca |  | 
						
							| 13 | 7 12 | jca |  | 
						
							| 14 | 13 | 3exp |  | 
						
							| 15 | 14 | reximdvai |  | 
						
							| 16 | 6 15 | mpd |  | 
						
							| 17 |  | simprrr |  | 
						
							| 18 |  | simp11l |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 19 | hllatd |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 21 2 | atbase |  | 
						
							| 23 | 22 | ad2antrl |  | 
						
							| 24 |  | simp121 |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 21 2 | atbase |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 |  | simp122 |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 21 2 | atbase |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 |  | simprrl |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 21 1 33 | latnlej1l |  | 
						
							| 35 | 20 23 27 31 32 34 | syl131anc |  | 
						
							| 36 | 21 1 33 | latnlej1r |  | 
						
							| 37 | 20 23 27 31 32 36 | syl131anc |  | 
						
							| 38 |  | simpl3 |  | 
						
							| 39 |  | nbrne2 |  | 
						
							| 40 | 39 | necomd |  | 
						
							| 41 | 38 32 40 | syl2anc |  | 
						
							| 42 | 35 37 41 | 3jca |  | 
						
							| 43 | 17 42 | jca |  | 
						
							| 44 |  | simp11 |  | 
						
							| 45 |  | simp131 |  | 
						
							| 46 |  | simp132 |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 1 47 33 2 3 | lhp2lt |  | 
						
							| 49 | 44 24 45 28 46 48 | syl122anc |  | 
						
							| 50 | 21 33 2 | hlatjcl |  | 
						
							| 51 | 18 24 28 50 | syl3anc |  | 
						
							| 52 |  | simp11r |  | 
						
							| 53 | 21 3 | lhpbase |  | 
						
							| 54 | 52 53 | syl |  | 
						
							| 55 | 21 1 47 2 | hlrelat1 |  | 
						
							| 56 | 18 51 54 55 | syl3anc |  | 
						
							| 57 | 49 56 | mpd |  | 
						
							| 58 | 43 57 | reximddv |  | 
						
							| 59 | 58 | 3expa |  | 
						
							| 60 |  | simp11l |  | 
						
							| 61 | 60 | adantr |  | 
						
							| 62 | 61 | hllatd |  | 
						
							| 63 | 22 | ad2antrl |  | 
						
							| 64 |  | simp121 |  | 
						
							| 65 | 64 | adantr |  | 
						
							| 66 |  | simp122 |  | 
						
							| 67 | 66 | adantr |  | 
						
							| 68 | 61 65 67 50 | syl3anc |  | 
						
							| 69 |  | simp11r |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 70 53 | syl |  | 
						
							| 72 |  | simprr3 |  | 
						
							| 73 |  | simp131 |  | 
						
							| 74 | 73 | adantr |  | 
						
							| 75 |  | simp132 |  | 
						
							| 76 | 75 | adantr |  | 
						
							| 77 | 65 26 | syl |  | 
						
							| 78 | 67 30 | syl |  | 
						
							| 79 | 21 1 33 | latjle12 |  | 
						
							| 80 | 62 77 78 71 79 | syl13anc |  | 
						
							| 81 | 74 76 80 | mpbi2and |  | 
						
							| 82 | 21 1 62 63 68 71 72 81 | lattrd |  | 
						
							| 83 |  | simprr1 |  | 
						
							| 84 |  | simprr2 |  | 
						
							| 85 |  | simpl3 |  | 
						
							| 86 |  | nbrne2 |  | 
						
							| 87 | 72 85 86 | syl2anc |  | 
						
							| 88 | 83 84 87 | 3jca |  | 
						
							| 89 | 82 88 | jca |  | 
						
							| 90 |  | simp2 |  | 
						
							| 91 | 1 33 2 | hlsupr |  | 
						
							| 92 | 60 64 66 90 91 | syl31anc |  | 
						
							| 93 | 89 92 | reximddv |  | 
						
							| 94 | 93 | 3expa |  | 
						
							| 95 | 59 94 | pm2.61dan |  | 
						
							| 96 | 16 95 | pm2.61dane |  |