Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limcmpt.a | |
|
limcmpt.b | |
||
limcmpt.f | |
||
limcmpt.j | |
||
limcmpt.k | |
||
Assertion | limcmpt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmpt.a | |
|
2 | limcmpt.b | |
|
3 | limcmpt.f | |
|
4 | limcmpt.j | |
|
5 | limcmpt.k | |
|
6 | nfcv | |
|
7 | nfv | |
|
8 | nfcv | |
|
9 | nffvmpt1 | |
|
10 | 7 8 9 | nfif | |
11 | eqeq1 | |
|
12 | fveq2 | |
|
13 | 11 12 | ifbieq2d | |
14 | 6 10 13 | cbvmpt | |
15 | 3 | fmpttd | |
16 | 4 5 14 15 1 2 | ellimc | |
17 | elun | |
|
18 | velsn | |
|
19 | 18 | orbi2i | |
20 | 17 19 | bitri | |
21 | pm5.61 | |
|
22 | 21 | simplbi | |
23 | 20 22 | sylanb | |
24 | 23 3 | sylan2 | |
25 | eqid | |
|
26 | 25 | fvmpt2 | |
27 | 23 24 26 | syl2an2 | |
28 | 27 | anassrs | |
29 | 28 | ifeq2da | |
30 | 29 | mpteq2dva | |
31 | 30 | eleq1d | |
32 | 16 31 | bitrd | |