Metamath Proof Explorer


Theorem limcmpt

Description: Express the limit operator for a function defined by a mapping. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcmpt.a φA
limcmpt.b φB
limcmpt.f φzAD
limcmpt.j J=K𝑡AB
limcmpt.k K=TopOpenfld
Assertion limcmpt φCzADlimBzABifz=BCDJCnPKB

Proof

Step Hyp Ref Expression
1 limcmpt.a φA
2 limcmpt.b φB
3 limcmpt.f φzAD
4 limcmpt.j J=K𝑡AB
5 limcmpt.k K=TopOpenfld
6 nfcv _yifz=BCzADz
7 nfv zy=B
8 nfcv _zC
9 nffvmpt1 _zzADy
10 7 8 9 nfif _zify=BCzADy
11 eqeq1 z=yz=By=B
12 fveq2 z=yzADz=zADy
13 11 12 ifbieq2d z=yifz=BCzADz=ify=BCzADy
14 6 10 13 cbvmpt zABifz=BCzADz=yABify=BCzADy
15 3 fmpttd φzAD:A
16 4 5 14 15 1 2 ellimc φCzADlimBzABifz=BCzADzJCnPKB
17 elun zABzAzB
18 velsn zBz=B
19 18 orbi2i zAzBzAz=B
20 17 19 bitri zABzAz=B
21 pm5.61 zAz=B¬z=BzA¬z=B
22 21 simplbi zAz=B¬z=BzA
23 20 22 sylanb zAB¬z=BzA
24 23 3 sylan2 φzAB¬z=BD
25 eqid zAD=zAD
26 25 fvmpt2 zADzADz=D
27 23 24 26 syl2an2 φzAB¬z=BzADz=D
28 27 anassrs φzAB¬z=BzADz=D
29 28 ifeq2da φzABifz=BCzADz=ifz=BCD
30 29 mpteq2dva φzABifz=BCzADz=zABifz=BCD
31 30 eleq1d φzABifz=BCzADzJCnPKBzABifz=BCDJCnPKB
32 16 31 bitrd φCzADlimBzABifz=BCDJCnPKB