Metamath Proof Explorer


Theorem liminflimsupxrre

Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses liminflimsupxrre.1 φM
liminflimsupxrre.2 Z=M
liminflimsupxrre.3 φF:Z*
liminflimsupxrre.4 φlim supF+∞
liminflimsupxrre.5 φlim infF−∞
Assertion liminflimsupxrre φkZFk:k

Proof

Step Hyp Ref Expression
1 liminflimsupxrre.1 φM
2 liminflimsupxrre.2 Z=M
3 liminflimsupxrre.3 φF:Z*
4 liminflimsupxrre.4 φlim supF+∞
5 liminflimsupxrre.5 φlim infF−∞
6 simpll φkZjkφ
7 2 uztrn2 kZjkjZ
8 7 adantll φkZjkjZ
9 simpr φjZjZ
10 3 fdmd φdomF=Z
11 10 adantr φjZdomF=Z
12 9 11 eleqtrrd φjZjdomF
13 12 ad2antrr φjZFj<+∞−∞<FjjdomF
14 3 ffvelcdmda φjZFj*
15 14 ad2antrr φjZFj<+∞−∞<FjFj*
16 mnfxr −∞*
17 16 a1i φjZ−∞<Fj−∞*
18 14 adantr φjZ−∞<FjFj*
19 simpr φjZ−∞<Fj−∞<Fj
20 17 18 19 xrgtned φjZ−∞<FjFj−∞
21 20 adantlr φjZFj<+∞−∞<FjFj−∞
22 14 adantr φjZFj<+∞Fj*
23 pnfxr +∞*
24 23 a1i φjZFj<+∞+∞*
25 simpr φjZFj<+∞Fj<+∞
26 22 24 25 xrltned φjZFj<+∞Fj+∞
27 26 adantr φjZFj<+∞−∞<FjFj+∞
28 15 21 27 xrred φjZFj<+∞−∞<FjFj
29 13 28 jca φjZFj<+∞−∞<FjjdomFFj
30 29 expl φjZFj<+∞−∞<FjjdomFFj
31 6 8 30 syl2anc φkZjkFj<+∞−∞<FjjdomFFj
32 31 ralimdva φkZjkFj<+∞−∞<FjjkjdomFFj
33 32 imp φkZjkFj<+∞−∞<FjjkjdomFFj
34 3 ffund φFunF
35 ffvresb FunFFk:kjkjdomFFj
36 34 35 syl φFk:kjkjdomFFj
37 36 ad2antrr φkZjkFj<+∞−∞<FjFk:kjkjdomFFj
38 33 37 mpbird φkZjkFj<+∞−∞<FjFk:k
39 nfv jφ
40 nfcv _jF
41 39 40 1 2 3 4 limsupubuz2 φkZjkFj<+∞
42 39 40 1 2 3 5 liminflbuz2 φkZjk−∞<Fj
43 2 rexanuz2 kZjkFj<+∞−∞<FjkZjkFj<+∞kZjk−∞<Fj
44 41 42 43 sylanbrc φkZjkFj<+∞−∞<Fj
45 38 44 reximddv3 φkZFk:k