Description: A sequence with values in the extended reals, and with real liminf and limsup, is eventually real. (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminflimsupxrre.1 | |
|
liminflimsupxrre.2 | |
||
liminflimsupxrre.3 | |
||
liminflimsupxrre.4 | |
||
liminflimsupxrre.5 | |
||
Assertion | liminflimsupxrre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminflimsupxrre.1 | |
|
2 | liminflimsupxrre.2 | |
|
3 | liminflimsupxrre.3 | |
|
4 | liminflimsupxrre.4 | |
|
5 | liminflimsupxrre.5 | |
|
6 | simpll | |
|
7 | 2 | uztrn2 | |
8 | 7 | adantll | |
9 | simpr | |
|
10 | 3 | fdmd | |
11 | 10 | adantr | |
12 | 9 11 | eleqtrrd | |
13 | 12 | ad2antrr | |
14 | 3 | ffvelcdmda | |
15 | 14 | ad2antrr | |
16 | mnfxr | |
|
17 | 16 | a1i | |
18 | 14 | adantr | |
19 | simpr | |
|
20 | 17 18 19 | xrgtned | |
21 | 20 | adantlr | |
22 | 14 | adantr | |
23 | pnfxr | |
|
24 | 23 | a1i | |
25 | simpr | |
|
26 | 22 24 25 | xrltned | |
27 | 26 | adantr | |
28 | 15 21 27 | xrred | |
29 | 13 28 | jca | |
30 | 29 | expl | |
31 | 6 8 30 | syl2anc | |
32 | 31 | ralimdva | |
33 | 32 | imp | |
34 | 3 | ffund | |
35 | ffvresb | |
|
36 | 34 35 | syl | |
37 | 36 | ad2antrr | |
38 | 33 37 | mpbird | |
39 | nfv | |
|
40 | nfcv | |
|
41 | 39 40 1 2 3 4 | limsupubuz2 | |
42 | 39 40 1 2 3 5 | liminflbuz2 | |
43 | 2 | rexanuz2 | |
44 | 41 42 43 | sylanbrc | |
45 | 38 44 | reximddv3 | |