Metamath Proof Explorer


Theorem limsup10ex

Description: The superior limit of a function that alternates between two values. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis limsup10ex.1 F = n if 2 n 0 1
Assertion limsup10ex lim sup F = 1

Proof

Step Hyp Ref Expression
1 limsup10ex.1 F = n if 2 n 0 1
2 nftru k
3 nnex V
4 3 a1i V
5 0xr 0 *
6 5 a1i n 0 *
7 1xr 1 *
8 7 a1i n 1 *
9 6 8 ifcld n if 2 n 0 1 *
10 1 9 fmpti F : *
11 10 a1i F : *
12 eqid k sup F k +∞ * < = k sup F k +∞ * <
13 2 4 11 12 limsupval3 lim sup F = sup ran k sup F k +∞ * < * <
14 13 mptru lim sup F = sup ran k sup F k +∞ * < * <
15 id k k
16 1 15 limsup10exlem k F k +∞ = 0 1
17 16 supeq1d k sup F k +∞ * < = sup 0 1 * <
18 xrltso < Or *
19 suppr < Or * 0 * 1 * sup 0 1 * < = if 1 < 0 0 1
20 18 5 7 19 mp3an sup 0 1 * < = if 1 < 0 0 1
21 0le1 0 1
22 0re 0
23 1re 1
24 lenlt 0 1 0 1 ¬ 1 < 0
25 22 23 24 mp2an 0 1 ¬ 1 < 0
26 21 25 mpbi ¬ 1 < 0
27 26 iffalsei if 1 < 0 0 1 = 1
28 20 27 eqtri sup 0 1 * < = 1
29 28 a1i k sup 0 1 * < = 1
30 17 29 eqtrd k sup F k +∞ * < = 1
31 30 mpteq2ia k sup F k +∞ * < = k 1
32 31 rneqi ran k sup F k +∞ * < = ran k 1
33 eqid k 1 = k 1
34 23 elexi 1 V
35 34 a1i k 1 V
36 ren0
37 36 a1i
38 33 35 37 rnmptc ran k 1 = 1
39 38 mptru ran k 1 = 1
40 32 39 eqtri ran k sup F k +∞ * < = 1
41 40 infeq1i sup ran k sup F k +∞ * < * < = sup 1 * <
42 infsn < Or * 1 * sup 1 * < = 1
43 18 7 42 mp2an sup 1 * < = 1
44 14 41 43 3eqtri lim sup F = 1