Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | limuni3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limeq | |
|
2 | 1 | rspcv | |
3 | vex | |
|
4 | limelon | |
|
5 | 3 4 | mpan | |
6 | 2 5 | syl6com | |
7 | 6 | ssrdv | |
8 | ssorduni | |
|
9 | 7 8 | syl | |
10 | 9 | adantl | |
11 | n0 | |
|
12 | 0ellim | |
|
13 | elunii | |
|
14 | 13 | expcom | |
15 | 12 14 | syl5 | |
16 | 2 15 | syld | |
17 | 16 | exlimiv | |
18 | 11 17 | sylbi | |
19 | 18 | imp | |
20 | eluni2 | |
|
21 | 1 | rspccv | |
22 | limsuc | |
|
23 | 22 | anbi1d | |
24 | elunii | |
|
25 | 23 24 | syl6bi | |
26 | 25 | expd | |
27 | 26 | com3r | |
28 | 21 27 | sylcom | |
29 | 28 | rexlimdv | |
30 | 20 29 | biimtrid | |
31 | 30 | ralrimiv | |
32 | 31 | adantl | |
33 | dflim4 | |
|
34 | 10 19 32 33 | syl3anbrc | |