Metamath Proof Explorer


Theorem limuni3

Description: The union of a nonempty class of limit ordinals is a limit ordinal. (Contributed by NM, 1-Feb-2005)

Ref Expression
Assertion limuni3 AxALimxLimA

Proof

Step Hyp Ref Expression
1 limeq x=zLimxLimz
2 1 rspcv zAxALimxLimz
3 vex zV
4 limelon zVLimzzOn
5 3 4 mpan LimzzOn
6 2 5 syl6com xALimxzAzOn
7 6 ssrdv xALimxAOn
8 ssorduni AOnOrdA
9 7 8 syl xALimxOrdA
10 9 adantl AxALimxOrdA
11 n0 AzzA
12 0ellim Limzz
13 elunii zzAA
14 13 expcom zAzA
15 12 14 syl5 zALimzA
16 2 15 syld zAxALimxA
17 16 exlimiv zzAxALimxA
18 11 17 sylbi AxALimxA
19 18 imp AxALimxA
20 eluni2 yAzAyz
21 1 rspccv xALimxzALimz
22 limsuc Limzyzsucyz
23 22 anbi1d LimzyzzAsucyzzA
24 elunii sucyzzAsucyA
25 23 24 syl6bi LimzyzzAsucyA
26 25 expd LimzyzzAsucyA
27 26 com3r zALimzyzsucyA
28 21 27 sylcom xALimxzAyzsucyA
29 28 rexlimdv xALimxzAyzsucyA
30 20 29 biimtrid xALimxyAsucyA
31 30 ralrimiv xALimxyAsucyA
32 31 adantl AxALimxyAsucyA
33 dflim4 LimAOrdAAyAsucyA
34 10 19 32 33 syl3anbrc AxALimxLimA