Description: Any singleton of a nonzero element is an independent set. (Contributed by Thierry Arnoux, 5-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lindssn.1 | |
|
lindssn.2 | |
||
Assertion | lindssn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindssn.1 | |
|
2 | lindssn.2 | |
|
3 | simp1 | |
|
4 | snssi | |
|
5 | 4 | 3ad2ant2 | |
6 | simpr | |
|
7 | eldifsni | |
|
8 | 6 7 | syl | |
9 | 8 | neneqd | |
10 | simpl3 | |
|
11 | 10 | neneqd | |
12 | ioran | |
|
13 | 9 11 12 | sylanbrc | |
14 | eqid | |
|
15 | eqid | |
|
16 | eqid | |
|
17 | eqid | |
|
18 | 3 | adantr | |
19 | 6 | eldifad | |
20 | simpl2 | |
|
21 | 1 14 15 16 17 2 18 19 20 | lvecvs0or | |
22 | 21 | necon3abid | |
23 | 13 22 | mpbird | |
24 | nelsn | |
|
25 | 23 24 | syl | |
26 | difid | |
|
27 | 26 | a1i | |
28 | 27 | fveq2d | |
29 | lveclmod | |
|
30 | eqid | |
|
31 | 2 30 | lsp0 | |
32 | 3 29 31 | 3syl | |
33 | 32 | adantr | |
34 | 28 33 | eqtrd | |
35 | 25 34 | neleqtrrd | |
36 | 35 | ralrimiva | |
37 | oveq2 | |
|
38 | sneq | |
|
39 | 38 | difeq2d | |
40 | 39 | fveq2d | |
41 | 37 40 | eleq12d | |
42 | 41 | notbid | |
43 | 42 | ralbidv | |
44 | 43 | ralsng | |
45 | 44 | 3ad2ant2 | |
46 | 36 45 | mpbird | |
47 | 1 14 30 15 16 17 | islinds2 | |
48 | 47 | biimpar | |
49 | 3 5 46 48 | syl12anc | |