Metamath Proof Explorer


Theorem lindssn

Description: Any singleton of a nonzero element is an independent set. (Contributed by Thierry Arnoux, 5-Aug-2023)

Ref Expression
Hypotheses lindssn.1 B=BaseW
lindssn.2 0˙=0W
Assertion lindssn WLVecXBX0˙XLIndSW

Proof

Step Hyp Ref Expression
1 lindssn.1 B=BaseW
2 lindssn.2 0˙=0W
3 simp1 WLVecXBX0˙WLVec
4 snssi XBXB
5 4 3ad2ant2 WLVecXBX0˙XB
6 simpr WLVecXBX0˙yBaseScalarW0ScalarWyBaseScalarW0ScalarW
7 eldifsni yBaseScalarW0ScalarWy0ScalarW
8 6 7 syl WLVecXBX0˙yBaseScalarW0ScalarWy0ScalarW
9 8 neneqd WLVecXBX0˙yBaseScalarW0ScalarW¬y=0ScalarW
10 simpl3 WLVecXBX0˙yBaseScalarW0ScalarWX0˙
11 10 neneqd WLVecXBX0˙yBaseScalarW0ScalarW¬X=0˙
12 ioran ¬y=0ScalarWX=0˙¬y=0ScalarW¬X=0˙
13 9 11 12 sylanbrc WLVecXBX0˙yBaseScalarW0ScalarW¬y=0ScalarWX=0˙
14 eqid W=W
15 eqid ScalarW=ScalarW
16 eqid BaseScalarW=BaseScalarW
17 eqid 0ScalarW=0ScalarW
18 3 adantr WLVecXBX0˙yBaseScalarW0ScalarWWLVec
19 6 eldifad WLVecXBX0˙yBaseScalarW0ScalarWyBaseScalarW
20 simpl2 WLVecXBX0˙yBaseScalarW0ScalarWXB
21 1 14 15 16 17 2 18 19 20 lvecvs0or WLVecXBX0˙yBaseScalarW0ScalarWyWX=0˙y=0ScalarWX=0˙
22 21 necon3abid WLVecXBX0˙yBaseScalarW0ScalarWyWX0˙¬y=0ScalarWX=0˙
23 13 22 mpbird WLVecXBX0˙yBaseScalarW0ScalarWyWX0˙
24 nelsn yWX0˙¬yWX0˙
25 23 24 syl WLVecXBX0˙yBaseScalarW0ScalarW¬yWX0˙
26 difid XX=
27 26 a1i WLVecXBX0˙yBaseScalarW0ScalarWXX=
28 27 fveq2d WLVecXBX0˙yBaseScalarW0ScalarWLSpanWXX=LSpanW
29 lveclmod WLVecWLMod
30 eqid LSpanW=LSpanW
31 2 30 lsp0 WLModLSpanW=0˙
32 3 29 31 3syl WLVecXBX0˙LSpanW=0˙
33 32 adantr WLVecXBX0˙yBaseScalarW0ScalarWLSpanW=0˙
34 28 33 eqtrd WLVecXBX0˙yBaseScalarW0ScalarWLSpanWXX=0˙
35 25 34 neleqtrrd WLVecXBX0˙yBaseScalarW0ScalarW¬yWXLSpanWXX
36 35 ralrimiva WLVecXBX0˙yBaseScalarW0ScalarW¬yWXLSpanWXX
37 oveq2 x=XyWx=yWX
38 sneq x=Xx=X
39 38 difeq2d x=XXx=XX
40 39 fveq2d x=XLSpanWXx=LSpanWXX
41 37 40 eleq12d x=XyWxLSpanWXxyWXLSpanWXX
42 41 notbid x=X¬yWxLSpanWXx¬yWXLSpanWXX
43 42 ralbidv x=XyBaseScalarW0ScalarW¬yWxLSpanWXxyBaseScalarW0ScalarW¬yWXLSpanWXX
44 43 ralsng XBxXyBaseScalarW0ScalarW¬yWxLSpanWXxyBaseScalarW0ScalarW¬yWXLSpanWXX
45 44 3ad2ant2 WLVecXBX0˙xXyBaseScalarW0ScalarW¬yWxLSpanWXxyBaseScalarW0ScalarW¬yWXLSpanWXX
46 36 45 mpbird WLVecXBX0˙xXyBaseScalarW0ScalarW¬yWxLSpanWXx
47 1 14 30 15 16 17 islinds2 WLVecXLIndSWXBxXyBaseScalarW0ScalarW¬yWxLSpanWXx
48 47 biimpar WLVecXBxXyBaseScalarW0ScalarW¬yWxLSpanWXxXLIndSW
49 3 5 46 48 syl12anc WLVecXBX0˙XLIndSW