Metamath Proof Explorer


Theorem linedegen

Description: When Line is applied with the same argument, the result is the empty set. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linedegen ALineA=

Proof

Step Hyp Ref Expression
1 df-ov ALineA=LineAA
2 neirr ¬AA
3 simp3 A𝔼nA𝔼nAAAA
4 2 3 mto ¬A𝔼nA𝔼nAA
5 4 intnanr ¬A𝔼nA𝔼nAAl=AAColinear-1
6 5 a1i n¬A𝔼nA𝔼nAAl=AAColinear-1
7 6 nrex ¬nA𝔼nA𝔼nAAl=AAColinear-1
8 7 nex ¬lnA𝔼nA𝔼nAAl=AAColinear-1
9 eleq1 x=Ax𝔼nA𝔼n
10 neeq1 x=AxyAy
11 9 10 3anbi13d x=Ax𝔼ny𝔼nxyA𝔼ny𝔼nAy
12 opeq1 x=Axy=Ay
13 12 eceq1d x=AxyColinear-1=AyColinear-1
14 13 eqeq2d x=Al=xyColinear-1l=AyColinear-1
15 11 14 anbi12d x=Ax𝔼ny𝔼nxyl=xyColinear-1A𝔼ny𝔼nAyl=AyColinear-1
16 15 rexbidv x=Anx𝔼ny𝔼nxyl=xyColinear-1nA𝔼ny𝔼nAyl=AyColinear-1
17 16 exbidv x=Alnx𝔼ny𝔼nxyl=xyColinear-1lnA𝔼ny𝔼nAyl=AyColinear-1
18 eleq1 y=Ay𝔼nA𝔼n
19 neeq2 y=AAyAA
20 18 19 3anbi23d y=AA𝔼ny𝔼nAyA𝔼nA𝔼nAA
21 opeq2 y=AAy=AA
22 21 eceq1d y=AAyColinear-1=AAColinear-1
23 22 eqeq2d y=Al=AyColinear-1l=AAColinear-1
24 20 23 anbi12d y=AA𝔼ny𝔼nAyl=AyColinear-1A𝔼nA𝔼nAAl=AAColinear-1
25 24 rexbidv y=AnA𝔼ny𝔼nAyl=AyColinear-1nA𝔼nA𝔼nAAl=AAColinear-1
26 25 exbidv y=AlnA𝔼ny𝔼nAyl=AyColinear-1lnA𝔼nA𝔼nAAl=AAColinear-1
27 17 26 opelopabg AVAVAAxy|lnx𝔼ny𝔼nxyl=xyColinear-1lnA𝔼nA𝔼nAAl=AAColinear-1
28 27 anidms AVAAxy|lnx𝔼ny𝔼nxyl=xyColinear-1lnA𝔼nA𝔼nAAl=AAColinear-1
29 8 28 mtbiri AV¬AAxy|lnx𝔼ny𝔼nxyl=xyColinear-1
30 elopaelxp AAxy|lnx𝔼ny𝔼nxyl=xyColinear-1AAV×V
31 opelxp1 AAV×VAV
32 30 31 syl AAxy|lnx𝔼ny𝔼nxyl=xyColinear-1AV
33 32 con3i ¬AV¬AAxy|lnx𝔼ny𝔼nxyl=xyColinear-1
34 29 33 pm2.61i ¬AAxy|lnx𝔼ny𝔼nxyl=xyColinear-1
35 df-line2 Line=xyl|nx𝔼ny𝔼nxyl=xyColinear-1
36 35 dmeqi domLine=domxyl|nx𝔼ny𝔼nxyl=xyColinear-1
37 dmoprab domxyl|nx𝔼ny𝔼nxyl=xyColinear-1=xy|lnx𝔼ny𝔼nxyl=xyColinear-1
38 36 37 eqtri domLine=xy|lnx𝔼ny𝔼nxyl=xyColinear-1
39 38 eleq2i AAdomLineAAxy|lnx𝔼ny𝔼nxyl=xyColinear-1
40 34 39 mtbir ¬AAdomLine
41 ndmfv ¬AAdomLineLineAA=
42 40 41 ax-mp LineAA=
43 1 42 eqtri ALineA=