Metamath Proof Explorer


Theorem llncvrlpln

Description: An element covering a lattice line is a lattice plane and vice-versa. (Contributed by NM, 26-Jun-2012)

Ref Expression
Hypotheses llncvrlpln.b B=BaseK
llncvrlpln.c C=K
llncvrlpln.n N=LLinesK
llncvrlpln.p P=LPlanesK
Assertion llncvrlpln KHLXBYBXCYXNYP

Proof

Step Hyp Ref Expression
1 llncvrlpln.b B=BaseK
2 llncvrlpln.c C=K
3 llncvrlpln.n N=LLinesK
4 llncvrlpln.p P=LPlanesK
5 simpll1 KHLXBYBXCYXNKHL
6 simpll3 KHLXBYBXCYXNYB
7 simpr KHLXBYBXCYXNXN
8 simplr KHLXBYBXCYXNXCY
9 1 2 3 4 lplni KHLYBXNXCYYP
10 5 6 7 8 9 syl31anc KHLXBYBXCYXNYP
11 simpll1 KHLXBYBXCYYPKHL
12 simpll2 KHLXBYBXCYYPXB
13 eqid AtomsK=AtomsK
14 13 4 lplnneat KHLYP¬YAtomsK
15 11 14 sylancom KHLXBYBXCYYP¬YAtomsK
16 simplr KHLXBYBXCYYPXCY
17 breq1 X=0.KXCY0.KCY
18 16 17 syl5ibcom KHLXBYBXCYYPX=0.K0.KCY
19 simpll3 KHLXBYBXCYYPYB
20 eqid 0.K=0.K
21 1 20 2 13 isat2 KHLYBYAtomsK0.KCY
22 11 19 21 syl2anc KHLXBYBXCYYPYAtomsK0.KCY
23 18 22 sylibrd KHLXBYBXCYYPX=0.KYAtomsK
24 23 necon3bd KHLXBYBXCYYP¬YAtomsKX0.K
25 15 24 mpd KHLXBYBXCYYPX0.K
26 3 4 lplnnelln KHLYP¬YN
27 11 26 sylancom KHLXBYBXCYYP¬YN
28 1 2 13 3 atcvrlln KHLXBYBXCYXAtomsKYN
29 28 adantr KHLXBYBXCYYPXAtomsKYN
30 27 29 mtbird KHLXBYBXCYYP¬XAtomsK
31 eqid K=K
32 1 31 20 13 3 llnle KHLXBX0.K¬XAtomsKzNzKX
33 11 12 25 30 32 syl22anc KHLXBYBXCYYPzNzKX
34 simpr3 KHLXBYBXCYYPzNzKXzKX
35 simpll1 KHLXBYBXCYYPzNzKXKHL
36 hlop KHLKOP
37 35 36 syl KHLXBYBXCYYPzNzKXKOP
38 simpr2 KHLXBYBXCYYPzNzKXzN
39 1 3 llnbase zNzB
40 38 39 syl KHLXBYBXCYYPzNzKXzB
41 simpll2 KHLXBYBXCYYPzNzKXXB
42 simpll3 KHLXBYBXCYYPzNzKXYB
43 simpr1 KHLXBYBXCYYPzNzKXYP
44 1 31 2 cvrle KHLXBYBXCYXKY
45 44 adantr KHLXBYBXCYYPzNzKXXKY
46 hlpos KHLKPoset
47 35 46 syl KHLXBYBXCYYPzNzKXKPoset
48 1 31 postr KPosetzBXBYBzKXXKYzKY
49 47 40 41 42 48 syl13anc KHLXBYBXCYYPzNzKXzKXXKYzKY
50 34 45 49 mp2and KHLXBYBXCYYPzNzKXzKY
51 31 2 3 4 llncvrlpln2 KHLzNYPzKYzCY
52 35 38 43 50 51 syl31anc KHLXBYBXCYYPzNzKXzCY
53 simplr KHLXBYBXCYYPzNzKXXCY
54 1 31 2 cvrcmp2 KOPzBXBYBzCYXCYzKXz=X
55 37 40 41 42 52 53 54 syl132anc KHLXBYBXCYYPzNzKXzKXz=X
56 34 55 mpbid KHLXBYBXCYYPzNzKXz=X
57 56 38 eqeltrrd KHLXBYBXCYYPzNzKXXN
58 57 3exp2 KHLXBYBXCYYPzNzKXXN
59 58 imp KHLXBYBXCYYPzNzKXXN
60 59 rexlimdv KHLXBYBXCYYPzNzKXXN
61 33 60 mpd KHLXBYBXCYYPXN
62 10 61 impbida KHLXBYBXCYXNYP