| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmatfval.m |
|
| 2 |
|
lmatfval.n |
|
| 3 |
|
lmatfval.w |
|
| 4 |
|
lmatfval.1 |
|
| 5 |
|
lmatfval.2 |
|
| 6 |
|
lmatcl.b |
|
| 7 |
|
lmatcl.1 |
|
| 8 |
|
lmatcl.2 |
|
| 9 |
|
lmatcl.r |
|
| 10 |
|
lmatval |
|
| 11 |
3 10
|
syl |
|
| 12 |
1 11
|
eqtrid |
|
| 13 |
4
|
oveq2d |
|
| 14 |
|
lbfzo0 |
|
| 15 |
2 14
|
sylibr |
|
| 16 |
|
0nn0 |
|
| 17 |
16
|
a1i |
|
| 18 |
|
simpr |
|
| 19 |
18
|
eleq1d |
|
| 20 |
18
|
fveq2d |
|
| 21 |
20
|
fveqeq2d |
|
| 22 |
19 21
|
imbi12d |
|
| 23 |
5
|
ex |
|
| 24 |
17 22 23
|
vtocld |
|
| 25 |
15 24
|
mpd |
|
| 26 |
25
|
oveq2d |
|
| 27 |
|
eqidd |
|
| 28 |
13 26 27
|
mpoeq123dv |
|
| 29 |
12 28
|
eqtrd |
|
| 30 |
|
fzfid |
|
| 31 |
3
|
3ad2ant1 |
|
| 32 |
|
simp2 |
|
| 33 |
|
fz1fzo0m1 |
|
| 34 |
32 33
|
syl |
|
| 35 |
4
|
3ad2ant1 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
34 36
|
eleqtrrd |
|
| 38 |
|
wrdsymbcl |
|
| 39 |
31 37 38
|
syl2anc |
|
| 40 |
|
simp3 |
|
| 41 |
|
fz1fzo0m1 |
|
| 42 |
40 41
|
syl |
|
| 43 |
|
ovexd |
|
| 44 |
|
simpr |
|
| 45 |
|
eqidd |
|
| 46 |
44 45
|
eleq12d |
|
| 47 |
44
|
fveq2d |
|
| 48 |
47
|
fveqeq2d |
|
| 49 |
46 48
|
imbi12d |
|
| 50 |
43 49 23
|
vtocld |
|
| 51 |
50
|
imp |
|
| 52 |
33 51
|
sylan2 |
|
| 53 |
52
|
3adant3 |
|
| 54 |
53
|
oveq2d |
|
| 55 |
42 54
|
eleqtrrd |
|
| 56 |
|
wrdsymbcl |
|
| 57 |
39 55 56
|
syl2anc |
|
| 58 |
7 6 8 30 9 57
|
matbas2d |
|
| 59 |
29 58
|
eqeltrd |
|