Metamath Proof Explorer


Theorem lmatcl

Description: Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020)

Ref Expression
Hypotheses lmatfval.m M=litMatW
lmatfval.n φN
lmatfval.w φWWordWordV
lmatfval.1 φW=N
lmatfval.2 φi0..^NWi=N
lmatcl.b V=BaseR
lmatcl.1 O=1NMatR
lmatcl.2 P=BaseO
lmatcl.r φRX
Assertion lmatcl φMP

Proof

Step Hyp Ref Expression
1 lmatfval.m M=litMatW
2 lmatfval.n φN
3 lmatfval.w φWWordWordV
4 lmatfval.1 φW=N
5 lmatfval.2 φi0..^NWi=N
6 lmatcl.b V=BaseR
7 lmatcl.1 O=1NMatR
8 lmatcl.2 P=BaseO
9 lmatcl.r φRX
10 lmatval WWordWordVlitMatW=k1W,j1W0Wk1j1
11 3 10 syl φlitMatW=k1W,j1W0Wk1j1
12 1 11 eqtrid φM=k1W,j1W0Wk1j1
13 4 oveq2d φ1W=1N
14 lbfzo0 00..^NN
15 2 14 sylibr φ00..^N
16 0nn0 00
17 16 a1i φ00
18 simpr φi=0i=0
19 18 eleq1d φi=0i0..^N00..^N
20 18 fveq2d φi=0Wi=W0
21 20 fveqeq2d φi=0Wi=NW0=N
22 19 21 imbi12d φi=0i0..^NWi=N00..^NW0=N
23 5 ex φi0..^NWi=N
24 17 22 23 vtocld φ00..^NW0=N
25 15 24 mpd φW0=N
26 25 oveq2d φ1W0=1N
27 eqidd φWk1j1=Wk1j1
28 13 26 27 mpoeq123dv φk1W,j1W0Wk1j1=k1N,j1NWk1j1
29 12 28 eqtrd φM=k1N,j1NWk1j1
30 fzfid φ1NFin
31 3 3ad2ant1 φk1Nj1NWWordWordV
32 simp2 φk1Nj1Nk1N
33 fz1fzo0m1 k1Nk10..^N
34 32 33 syl φk1Nj1Nk10..^N
35 4 3ad2ant1 φk1Nj1NW=N
36 35 oveq2d φk1Nj1N0..^W=0..^N
37 34 36 eleqtrrd φk1Nj1Nk10..^W
38 wrdsymbcl WWordWordVk10..^WWk1WordV
39 31 37 38 syl2anc φk1Nj1NWk1WordV
40 simp3 φk1Nj1Nj1N
41 fz1fzo0m1 j1Nj10..^N
42 40 41 syl φk1Nj1Nj10..^N
43 ovexd φk1V
44 simpr φi=k1i=k1
45 eqidd φi=k10..^N=0..^N
46 44 45 eleq12d φi=k1i0..^Nk10..^N
47 44 fveq2d φi=k1Wi=Wk1
48 47 fveqeq2d φi=k1Wi=NWk1=N
49 46 48 imbi12d φi=k1i0..^NWi=Nk10..^NWk1=N
50 43 49 23 vtocld φk10..^NWk1=N
51 50 imp φk10..^NWk1=N
52 33 51 sylan2 φk1NWk1=N
53 52 3adant3 φk1Nj1NWk1=N
54 53 oveq2d φk1Nj1N0..^Wk1=0..^N
55 42 54 eleqtrrd φk1Nj1Nj10..^Wk1
56 wrdsymbcl Wk1WordVj10..^Wk1Wk1j1V
57 39 55 56 syl2anc φk1Nj1NWk1j1V
58 7 6 8 30 9 57 matbas2d φk1N,j1NWk1j1P
59 29 58 eqeltrd φMP