Metamath Proof Explorer


Theorem lmcn2

Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014)

Ref Expression
Hypotheses txlm.z Z=M
txlm.m φM
txlm.j φJTopOnX
txlm.k φKTopOnY
txlm.f φF:ZX
txlm.g φG:ZY
lmcn2.fl φFtJR
lmcn2.gl φGtKS
lmcn2.o φOJ×tKCnN
lmcn2.h H=nZFnOGn
Assertion lmcn2 φHtNROS

Proof

Step Hyp Ref Expression
1 txlm.z Z=M
2 txlm.m φM
3 txlm.j φJTopOnX
4 txlm.k φKTopOnY
5 txlm.f φF:ZX
6 txlm.g φG:ZY
7 lmcn2.fl φFtJR
8 lmcn2.gl φGtKS
9 lmcn2.o φOJ×tKCnN
10 lmcn2.h H=nZFnOGn
11 5 ffvelcdmda φnZFnX
12 6 ffvelcdmda φnZGnY
13 11 12 opelxpd φnZFnGnX×Y
14 eqidd φnZFnGn=nZFnGn
15 txtopon JTopOnXKTopOnYJ×tKTopOnX×Y
16 3 4 15 syl2anc φJ×tKTopOnX×Y
17 cntop2 OJ×tKCnNNTop
18 9 17 syl φNTop
19 toptopon2 NTopNTopOnN
20 18 19 sylib φNTopOnN
21 cnf2 J×tKTopOnX×YNTopOnNOJ×tKCnNO:X×YN
22 16 20 9 21 syl3anc φO:X×YN
23 22 feqmptd φO=xX×YOx
24 fveq2 x=FnGnOx=OFnGn
25 df-ov FnOGn=OFnGn
26 24 25 eqtr4di x=FnGnOx=FnOGn
27 13 14 23 26 fmptco φOnZFnGn=nZFnOGn
28 27 10 eqtr4di φOnZFnGn=H
29 eqid nZFnGn=nZFnGn
30 1 2 3 4 5 6 29 txlm φFtJRGtKSnZFnGntJ×tKRS
31 7 8 30 mpbi2and φnZFnGntJ×tKRS
32 31 9 lmcn φOnZFnGntNORS
33 28 32 eqbrtrrd φHtNORS
34 df-ov ROS=ORS
35 33 34 breqtrrdi φHtNROS