Metamath Proof Explorer


Theorem lmhmpropd

Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses lmhmpropd.a φB=BaseJ
lmhmpropd.b φC=BaseK
lmhmpropd.c φB=BaseL
lmhmpropd.d φC=BaseM
lmhmpropd.1 φF=ScalarJ
lmhmpropd.2 φG=ScalarK
lmhmpropd.3 φF=ScalarL
lmhmpropd.4 φG=ScalarM
lmhmpropd.p P=BaseF
lmhmpropd.q Q=BaseG
lmhmpropd.e φxByBx+Jy=x+Ly
lmhmpropd.f φxCyCx+Ky=x+My
lmhmpropd.g φxPyBxJy=xLy
lmhmpropd.h φxQyCxKy=xMy
Assertion lmhmpropd φJLMHomK=LLMHomM

Proof

Step Hyp Ref Expression
1 lmhmpropd.a φB=BaseJ
2 lmhmpropd.b φC=BaseK
3 lmhmpropd.c φB=BaseL
4 lmhmpropd.d φC=BaseM
5 lmhmpropd.1 φF=ScalarJ
6 lmhmpropd.2 φG=ScalarK
7 lmhmpropd.3 φF=ScalarL
8 lmhmpropd.4 φG=ScalarM
9 lmhmpropd.p P=BaseF
10 lmhmpropd.q Q=BaseG
11 lmhmpropd.e φxByBx+Jy=x+Ly
12 lmhmpropd.f φxCyCx+Ky=x+My
13 lmhmpropd.g φxPyBxJy=xLy
14 lmhmpropd.h φxQyCxKy=xMy
15 1 3 11 5 7 9 13 lmodpropd φJLModLLMod
16 2 4 12 6 8 10 14 lmodpropd φKLModMLMod
17 15 16 anbi12d φJLModKLModLLModMLMod
18 13 oveqrspc2v φzPwBzJw=zLw
19 18 adantlr φfJGrpHomKG=FzPwBzJw=zLw
20 19 fveq2d φfJGrpHomKG=FzPwBfzJw=fzLw
21 simpll φfJGrpHomKG=FzPwBφ
22 simprl φfJGrpHomKG=FzPwBzP
23 simplrr φfJGrpHomKG=FzPwBG=F
24 23 fveq2d φfJGrpHomKG=FzPwBBaseG=BaseF
25 24 10 9 3eqtr4g φfJGrpHomKG=FzPwBQ=P
26 22 25 eleqtrrd φfJGrpHomKG=FzPwBzQ
27 simplrl φfJGrpHomKG=FzPwBfJGrpHomK
28 eqid BaseJ=BaseJ
29 eqid BaseK=BaseK
30 28 29 ghmf fJGrpHomKf:BaseJBaseK
31 27 30 syl φfJGrpHomKG=FzPwBf:BaseJBaseK
32 simprr φfJGrpHomKG=FzPwBwB
33 21 1 syl φfJGrpHomKG=FzPwBB=BaseJ
34 32 33 eleqtrd φfJGrpHomKG=FzPwBwBaseJ
35 31 34 ffvelcdmd φfJGrpHomKG=FzPwBfwBaseK
36 21 2 syl φfJGrpHomKG=FzPwBC=BaseK
37 35 36 eleqtrrd φfJGrpHomKG=FzPwBfwC
38 14 oveqrspc2v φzQfwCzKfw=zMfw
39 21 26 37 38 syl12anc φfJGrpHomKG=FzPwBzKfw=zMfw
40 20 39 eqeq12d φfJGrpHomKG=FzPwBfzJw=zKfwfzLw=zMfw
41 40 2ralbidva φfJGrpHomKG=FzPwBfzJw=zKfwzPwBfzLw=zMfw
42 41 pm5.32da φfJGrpHomKG=FzPwBfzJw=zKfwfJGrpHomKG=FzPwBfzLw=zMfw
43 df-3an fJGrpHomKG=FzPwBfzJw=zKfwfJGrpHomKG=FzPwBfzJw=zKfw
44 df-3an fJGrpHomKG=FzPwBfzLw=zMfwfJGrpHomKG=FzPwBfzLw=zMfw
45 42 43 44 3bitr4g φfJGrpHomKG=FzPwBfzJw=zKfwfJGrpHomKG=FzPwBfzLw=zMfw
46 6 5 eqeq12d φG=FScalarK=ScalarJ
47 5 fveq2d φBaseF=BaseScalarJ
48 9 47 eqtrid φP=BaseScalarJ
49 1 raleqdv φwBfzJw=zKfwwBaseJfzJw=zKfw
50 48 49 raleqbidv φzPwBfzJw=zKfwzBaseScalarJwBaseJfzJw=zKfw
51 46 50 3anbi23d φfJGrpHomKG=FzPwBfzJw=zKfwfJGrpHomKScalarK=ScalarJzBaseScalarJwBaseJfzJw=zKfw
52 1 2 3 4 11 12 ghmpropd φJGrpHomK=LGrpHomM
53 52 eleq2d φfJGrpHomKfLGrpHomM
54 8 7 eqeq12d φG=FScalarM=ScalarL
55 7 fveq2d φBaseF=BaseScalarL
56 9 55 eqtrid φP=BaseScalarL
57 3 raleqdv φwBfzLw=zMfwwBaseLfzLw=zMfw
58 56 57 raleqbidv φzPwBfzLw=zMfwzBaseScalarLwBaseLfzLw=zMfw
59 53 54 58 3anbi123d φfJGrpHomKG=FzPwBfzLw=zMfwfLGrpHomMScalarM=ScalarLzBaseScalarLwBaseLfzLw=zMfw
60 45 51 59 3bitr3d φfJGrpHomKScalarK=ScalarJzBaseScalarJwBaseJfzJw=zKfwfLGrpHomMScalarM=ScalarLzBaseScalarLwBaseLfzLw=zMfw
61 17 60 anbi12d φJLModKLModfJGrpHomKScalarK=ScalarJzBaseScalarJwBaseJfzJw=zKfwLLModMLModfLGrpHomMScalarM=ScalarLzBaseScalarLwBaseLfzLw=zMfw
62 eqid ScalarJ=ScalarJ
63 eqid ScalarK=ScalarK
64 eqid BaseScalarJ=BaseScalarJ
65 eqid J=J
66 eqid K=K
67 62 63 64 28 65 66 islmhm fJLMHomKJLModKLModfJGrpHomKScalarK=ScalarJzBaseScalarJwBaseJfzJw=zKfw
68 eqid ScalarL=ScalarL
69 eqid ScalarM=ScalarM
70 eqid BaseScalarL=BaseScalarL
71 eqid BaseL=BaseL
72 eqid L=L
73 eqid M=M
74 68 69 70 71 72 73 islmhm fLLMHomMLLModMLModfLGrpHomMScalarM=ScalarLzBaseScalarLwBaseLfzLw=zMfw
75 61 67 74 3bitr4g φfJLMHomKfLLMHomM
76 75 eqrdv φJLMHomK=LLMHomM