| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmpropd.a |
|
| 2 |
|
lmhmpropd.b |
|
| 3 |
|
lmhmpropd.c |
|
| 4 |
|
lmhmpropd.d |
|
| 5 |
|
lmhmpropd.1 |
|
| 6 |
|
lmhmpropd.2 |
|
| 7 |
|
lmhmpropd.3 |
|
| 8 |
|
lmhmpropd.4 |
|
| 9 |
|
lmhmpropd.p |
|
| 10 |
|
lmhmpropd.q |
|
| 11 |
|
lmhmpropd.e |
|
| 12 |
|
lmhmpropd.f |
|
| 13 |
|
lmhmpropd.g |
|
| 14 |
|
lmhmpropd.h |
|
| 15 |
1 3 11 5 7 9 13
|
lmodpropd |
|
| 16 |
2 4 12 6 8 10 14
|
lmodpropd |
|
| 17 |
15 16
|
anbi12d |
|
| 18 |
13
|
oveqrspc2v |
|
| 19 |
18
|
adantlr |
|
| 20 |
19
|
fveq2d |
|
| 21 |
|
simpll |
|
| 22 |
|
simprl |
|
| 23 |
|
simplrr |
|
| 24 |
23
|
fveq2d |
|
| 25 |
24 10 9
|
3eqtr4g |
|
| 26 |
22 25
|
eleqtrrd |
|
| 27 |
|
simplrl |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
28 29
|
ghmf |
|
| 31 |
27 30
|
syl |
|
| 32 |
|
simprr |
|
| 33 |
21 1
|
syl |
|
| 34 |
32 33
|
eleqtrd |
|
| 35 |
31 34
|
ffvelcdmd |
|
| 36 |
21 2
|
syl |
|
| 37 |
35 36
|
eleqtrrd |
|
| 38 |
14
|
oveqrspc2v |
|
| 39 |
21 26 37 38
|
syl12anc |
|
| 40 |
20 39
|
eqeq12d |
|
| 41 |
40
|
2ralbidva |
|
| 42 |
41
|
pm5.32da |
|
| 43 |
|
df-3an |
|
| 44 |
|
df-3an |
|
| 45 |
42 43 44
|
3bitr4g |
|
| 46 |
6 5
|
eqeq12d |
|
| 47 |
5
|
fveq2d |
|
| 48 |
9 47
|
eqtrid |
|
| 49 |
1
|
raleqdv |
|
| 50 |
48 49
|
raleqbidv |
|
| 51 |
46 50
|
3anbi23d |
|
| 52 |
1 2 3 4 11 12
|
ghmpropd |
|
| 53 |
52
|
eleq2d |
|
| 54 |
8 7
|
eqeq12d |
|
| 55 |
7
|
fveq2d |
|
| 56 |
9 55
|
eqtrid |
|
| 57 |
3
|
raleqdv |
|
| 58 |
56 57
|
raleqbidv |
|
| 59 |
53 54 58
|
3anbi123d |
|
| 60 |
45 51 59
|
3bitr3d |
|
| 61 |
17 60
|
anbi12d |
|
| 62 |
|
eqid |
|
| 63 |
|
eqid |
|
| 64 |
|
eqid |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
62 63 64 28 65 66
|
islmhm |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
|
eqid |
|
| 71 |
|
eqid |
|
| 72 |
|
eqid |
|
| 73 |
|
eqid |
|
| 74 |
68 69 70 71 72 73
|
islmhm |
|
| 75 |
61 67 74
|
3bitr4g |
|
| 76 |
75
|
eqrdv |
|