Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmhmpropd.a | |
|
lmhmpropd.b | |
||
lmhmpropd.c | |
||
lmhmpropd.d | |
||
lmhmpropd.1 | |
||
lmhmpropd.2 | |
||
lmhmpropd.3 | |
||
lmhmpropd.4 | |
||
lmhmpropd.p | |
||
lmhmpropd.q | |
||
lmhmpropd.e | |
||
lmhmpropd.f | |
||
lmhmpropd.g | |
||
lmhmpropd.h | |
||
Assertion | lmhmpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmpropd.a | |
|
2 | lmhmpropd.b | |
|
3 | lmhmpropd.c | |
|
4 | lmhmpropd.d | |
|
5 | lmhmpropd.1 | |
|
6 | lmhmpropd.2 | |
|
7 | lmhmpropd.3 | |
|
8 | lmhmpropd.4 | |
|
9 | lmhmpropd.p | |
|
10 | lmhmpropd.q | |
|
11 | lmhmpropd.e | |
|
12 | lmhmpropd.f | |
|
13 | lmhmpropd.g | |
|
14 | lmhmpropd.h | |
|
15 | 1 3 11 5 7 9 13 | lmodpropd | |
16 | 2 4 12 6 8 10 14 | lmodpropd | |
17 | 15 16 | anbi12d | |
18 | 13 | oveqrspc2v | |
19 | 18 | adantlr | |
20 | 19 | fveq2d | |
21 | simpll | |
|
22 | simprl | |
|
23 | simplrr | |
|
24 | 23 | fveq2d | |
25 | 24 10 9 | 3eqtr4g | |
26 | 22 25 | eleqtrrd | |
27 | simplrl | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | 28 29 | ghmf | |
31 | 27 30 | syl | |
32 | simprr | |
|
33 | 21 1 | syl | |
34 | 32 33 | eleqtrd | |
35 | 31 34 | ffvelcdmd | |
36 | 21 2 | syl | |
37 | 35 36 | eleqtrrd | |
38 | 14 | oveqrspc2v | |
39 | 21 26 37 38 | syl12anc | |
40 | 20 39 | eqeq12d | |
41 | 40 | 2ralbidva | |
42 | 41 | pm5.32da | |
43 | df-3an | |
|
44 | df-3an | |
|
45 | 42 43 44 | 3bitr4g | |
46 | 6 5 | eqeq12d | |
47 | 5 | fveq2d | |
48 | 9 47 | eqtrid | |
49 | 1 | raleqdv | |
50 | 48 49 | raleqbidv | |
51 | 46 50 | 3anbi23d | |
52 | 1 2 3 4 11 12 | ghmpropd | |
53 | 52 | eleq2d | |
54 | 8 7 | eqeq12d | |
55 | 7 | fveq2d | |
56 | 9 55 | eqtrid | |
57 | 3 | raleqdv | |
58 | 56 57 | raleqbidv | |
59 | 53 54 58 | 3anbi123d | |
60 | 45 51 59 | 3bitr3d | |
61 | 17 60 | anbi12d | |
62 | eqid | |
|
63 | eqid | |
|
64 | eqid | |
|
65 | eqid | |
|
66 | eqid | |
|
67 | 62 63 64 28 65 66 | islmhm | |
68 | eqid | |
|
69 | eqid | |
|
70 | eqid | |
|
71 | eqid | |
|
72 | eqid | |
|
73 | eqid | |
|
74 | 68 69 70 71 72 73 | islmhm | |
75 | 61 67 74 | 3bitr4g | |
76 | 75 | eqrdv | |