| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmimdim.1 |  | 
						
							| 2 |  | lmimdim.2 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 | 3 | lbsex |  | 
						
							| 5 | 2 4 | syl |  | 
						
							| 6 |  | n0 |  | 
						
							| 7 | 5 6 | sylib |  | 
						
							| 8 | 1 | adantr |  | 
						
							| 9 | 8 | resexd |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 10 11 | lmimf1o |  | 
						
							| 13 |  | f1of1 |  | 
						
							| 14 | 8 12 13 | 3syl |  | 
						
							| 15 | 10 3 | lbsss |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 |  | f1ssres |  | 
						
							| 18 | 14 16 17 | syl2anc |  | 
						
							| 19 |  | hashf1dmrn |  | 
						
							| 20 | 9 18 19 | syl2anc |  | 
						
							| 21 |  | df-ima |  | 
						
							| 22 | 21 | fveq2i |  | 
						
							| 23 | 20 22 | eqtr4di |  | 
						
							| 24 | 3 | dimval |  | 
						
							| 25 | 2 24 | sylan |  | 
						
							| 26 |  | lmimlmhm |  | 
						
							| 27 | 1 26 | syl |  | 
						
							| 28 |  | lmhmlvec |  | 
						
							| 29 | 28 | biimpa |  | 
						
							| 30 | 27 2 29 | syl2anc |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 3 32 | lmimlbs |  | 
						
							| 34 | 1 33 | sylan |  | 
						
							| 35 | 32 | dimval |  | 
						
							| 36 | 31 34 35 | syl2anc |  | 
						
							| 37 | 23 25 36 | 3eqtr4d |  | 
						
							| 38 | 7 37 | exlimddv |  |