Metamath Proof Explorer


Theorem lmmbrf

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 presupposes that F is a function. (Contributed by NM, 20-Jul-2007) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmbr.2 J=MetOpenD
lmmbr.3 φD∞MetX
lmmbr3.5 Z=M
lmmbr3.6 φM
lmmbrf.7 φkZFk=A
lmmbrf.8 φF:ZX
Assertion lmmbrf φFtJPPXx+jZkjADP<x

Proof

Step Hyp Ref Expression
1 lmmbr.2 J=MetOpenD
2 lmmbr.3 φD∞MetX
3 lmmbr3.5 Z=M
4 lmmbr3.6 φM
5 lmmbrf.7 φkZFk=A
6 lmmbrf.8 φF:ZX
7 elfvdm D∞MetXXdom∞Met
8 cnex V
9 7 8 jctir D∞MetXXdom∞MetV
10 uzssz M
11 zsscn
12 10 11 sstri M
13 3 12 eqsstri Z
14 13 jctr F:ZXF:ZXZ
15 elpm2r Xdom∞MetVF:ZXZFX𝑝𝑚
16 9 14 15 syl2an D∞MetXF:ZXFX𝑝𝑚
17 2 6 16 syl2anc φFX𝑝𝑚
18 17 biantrurd φPXx+jZkjkdomFFkXFkDP<xFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x
19 3 uztrn2 jZkjkZ
20 19 adantll φjZkjkZ
21 5 oveq1d φkZFkDP=ADP
22 21 breq1d φkZFkDP<xADP<x
23 22 adantrl φjZkZFkDP<xADP<x
24 6 fdmd φdomF=Z
25 24 eleq2d φkdomFkZ
26 25 biimpar φkZkdomF
27 6 ffvelcdmda φkZFkX
28 26 27 jca φkZkdomFFkX
29 28 biantrurd φkZFkDP<xkdomFFkXFkDP<x
30 df-3an kdomFFkXFkDP<xkdomFFkXFkDP<x
31 29 30 bitr4di φkZFkDP<xkdomFFkXFkDP<x
32 31 adantrl φjZkZFkDP<xkdomFFkXFkDP<x
33 23 32 bitr3d φjZkZADP<xkdomFFkXFkDP<x
34 33 anassrs φjZkZADP<xkdomFFkXFkDP<x
35 20 34 syldan φjZkjADP<xkdomFFkXFkDP<x
36 35 ralbidva φjZkjADP<xkjkdomFFkXFkDP<x
37 36 rexbidva φjZkjADP<xjZkjkdomFFkXFkDP<x
38 37 ralbidv φx+jZkjADP<xx+jZkjkdomFFkXFkDP<x
39 38 anbi2d φPXx+jZkjADP<xPXx+jZkjkdomFFkXFkDP<x
40 1 2 3 4 lmmbr3 φFtJPFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x
41 3anass FX𝑝𝑚PXx+jZkjkdomFFkXFkDP<xFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x
42 40 41 bitrdi φFtJPFX𝑝𝑚PXx+jZkjkdomFFkXFkDP<x
43 18 39 42 3bitr4rd φFtJPPXx+jZkjADP<x