Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 presupposes that F is a function. (Contributed by NM, 20-Jul-2007) (Revised by Mario Carneiro, 1-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmmbr.2 | |
|
lmmbr.3 | |
||
lmmbr3.5 | |
||
lmmbr3.6 | |
||
lmmbrf.7 | |
||
lmmbrf.8 | |
||
Assertion | lmmbrf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmmbr.2 | |
|
2 | lmmbr.3 | |
|
3 | lmmbr3.5 | |
|
4 | lmmbr3.6 | |
|
5 | lmmbrf.7 | |
|
6 | lmmbrf.8 | |
|
7 | elfvdm | |
|
8 | cnex | |
|
9 | 7 8 | jctir | |
10 | uzssz | |
|
11 | zsscn | |
|
12 | 10 11 | sstri | |
13 | 3 12 | eqsstri | |
14 | 13 | jctr | |
15 | elpm2r | |
|
16 | 9 14 15 | syl2an | |
17 | 2 6 16 | syl2anc | |
18 | 17 | biantrurd | |
19 | 3 | uztrn2 | |
20 | 19 | adantll | |
21 | 5 | oveq1d | |
22 | 21 | breq1d | |
23 | 22 | adantrl | |
24 | 6 | fdmd | |
25 | 24 | eleq2d | |
26 | 25 | biimpar | |
27 | 6 | ffvelcdmda | |
28 | 26 27 | jca | |
29 | 28 | biantrurd | |
30 | df-3an | |
|
31 | 29 30 | bitr4di | |
32 | 31 | adantrl | |
33 | 23 32 | bitr3d | |
34 | 33 | anassrs | |
35 | 20 34 | syldan | |
36 | 35 | ralbidva | |
37 | 36 | rexbidva | |
38 | 37 | ralbidv | |
39 | 38 | anbi2d | |
40 | 1 2 3 4 | lmmbr3 | |
41 | 3anass | |
|
42 | 40 41 | bitrdi | |
43 | 18 39 42 | 3bitr4rd | |