Metamath Proof Explorer


Theorem lmodvsneg

Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Hypotheses lmodvsneg.b B=BaseW
lmodvsneg.f F=ScalarW
lmodvsneg.s ·˙=W
lmodvsneg.n N=invgW
lmodvsneg.k K=BaseF
lmodvsneg.m M=invgF
lmodvsneg.w φWLMod
lmodvsneg.x φXB
lmodvsneg.r φRK
Assertion lmodvsneg φNR·˙X=MR·˙X

Proof

Step Hyp Ref Expression
1 lmodvsneg.b B=BaseW
2 lmodvsneg.f F=ScalarW
3 lmodvsneg.s ·˙=W
4 lmodvsneg.n N=invgW
5 lmodvsneg.k K=BaseF
6 lmodvsneg.m M=invgF
7 lmodvsneg.w φWLMod
8 lmodvsneg.x φXB
9 lmodvsneg.r φRK
10 2 lmodring WLModFRing
11 7 10 syl φFRing
12 ringgrp FRingFGrp
13 11 12 syl φFGrp
14 eqid 1F=1F
15 5 14 ringidcl FRing1FK
16 11 15 syl φ1FK
17 5 6 grpinvcl FGrp1FKM1FK
18 13 16 17 syl2anc φM1FK
19 eqid F=F
20 1 2 3 5 19 lmodvsass WLModM1FKRKXBM1FFR·˙X=M1F·˙R·˙X
21 7 18 9 8 20 syl13anc φM1FFR·˙X=M1F·˙R·˙X
22 5 19 14 6 11 9 ringnegl φM1FFR=MR
23 22 oveq1d φM1FFR·˙X=MR·˙X
24 1 2 3 5 lmodvscl WLModRKXBR·˙XB
25 7 9 8 24 syl3anc φR·˙XB
26 1 4 2 3 14 6 lmodvneg1 WLModR·˙XBM1F·˙R·˙X=NR·˙X
27 7 25 26 syl2anc φM1F·˙R·˙X=NR·˙X
28 21 23 27 3eqtr3rd φNR·˙X=MR·˙X