Metamath Proof Explorer


Theorem logdiv2

Description: Generalization of relogdiv to a complex left argument. (Contributed by Mario Carneiro, 8-Jul-2017)

Ref Expression
Assertion logdiv2 AA0B+logAB=logAlogB

Proof

Step Hyp Ref Expression
1 logcl AA0logA
2 1 3adant3 AA0B+logA
3 relogcl B+logB
4 3 3ad2ant3 AA0B+logB
5 4 recnd AA0B+logB
6 efsub logAlogBelogAlogB=elogAelogB
7 2 5 6 syl2anc AA0B+elogAlogB=elogAelogB
8 eflog AA0elogA=A
9 8 3adant3 AA0B+elogA=A
10 reeflog B+elogB=B
11 10 3ad2ant3 AA0B+elogB=B
12 9 11 oveq12d AA0B+elogAelogB=AB
13 7 12 eqtrd AA0B+elogAlogB=AB
14 13 fveq2d AA0B+logelogAlogB=logAB
15 2 5 negsubd AA0B+logA+logB=logAlogB
16 logrncl AA0logAranlog
17 16 3adant3 AA0B+logAranlog
18 4 renegcld AA0B+logB
19 logrnaddcl logAranloglogBlogA+logBranlog
20 17 18 19 syl2anc AA0B+logA+logBranlog
21 15 20 eqeltrrd AA0B+logAlogBranlog
22 logef logAlogBranloglogelogAlogB=logAlogB
23 21 22 syl AA0B+logelogAlogB=logAlogB
24 14 23 eqtr3d AA0B+logAB=logAlogB