Metamath Proof Explorer


Theorem lspprat

Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if z is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014)

Ref Expression
Hypotheses lspprat.v V=BaseW
lspprat.s S=LSubSpW
lspprat.n N=LSpanW
lspprat.w φWLVec
lspprat.u φUS
lspprat.x φXV
lspprat.y φYV
lspprat.p φUNXY
Assertion lspprat φzVU=Nz

Proof

Step Hyp Ref Expression
1 lspprat.v V=BaseW
2 lspprat.s S=LSubSpW
3 lspprat.n N=LSpanW
4 lspprat.w φWLVec
5 lspprat.u φUS
6 lspprat.x φXV
7 lspprat.y φYV
8 lspprat.p φUNXY
9 ssdif0 U0WU0W=
10 lveclmod WLVecWLMod
11 4 10 syl φWLMod
12 eqid 0W=0W
13 1 12 lmod0vcl WLMod0WV
14 11 13 syl φ0WV
15 14 adantr φU0W0WV
16 simpr φU0WU0W
17 12 2 lss0ss WLModUS0WU
18 11 5 17 syl2anc φ0WU
19 18 adantr φU0W0WU
20 16 19 eqssd φU0WU=0W
21 12 3 lspsn0 WLModN0W=0W
22 11 21 syl φN0W=0W
23 22 adantr φU0WN0W=0W
24 20 23 eqtr4d φU0WU=N0W
25 sneq z=0Wz=0W
26 25 fveq2d z=0WNz=N0W
27 26 rspceeqv 0WVU=N0WzVU=Nz
28 15 24 27 syl2anc φU0WzVU=Nz
29 28 ex φU0WzVU=Nz
30 9 29 biimtrrid φU0W=zVU=Nz
31 1 2 lssss USUV
32 5 31 syl φUV
33 32 ssdifssd φU0WV
34 33 sseld φzU0WzV
35 1 2 3 4 5 6 7 8 12 lsppratlem6 φzU0WU=Nz
36 34 35 jcad φzU0WzVU=Nz
37 36 eximdv φzzU0WzzVU=Nz
38 n0 U0WzzU0W
39 df-rex zVU=NzzzVU=Nz
40 37 38 39 3imtr4g φU0WzVU=Nz
41 30 40 pm2.61dne φzVU=Nz