Description: A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if z is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspprat.v | |
|
lspprat.s | |
||
lspprat.n | |
||
lspprat.w | |
||
lspprat.u | |
||
lspprat.x | |
||
lspprat.y | |
||
lspprat.p | |
||
Assertion | lspprat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.v | |
|
2 | lspprat.s | |
|
3 | lspprat.n | |
|
4 | lspprat.w | |
|
5 | lspprat.u | |
|
6 | lspprat.x | |
|
7 | lspprat.y | |
|
8 | lspprat.p | |
|
9 | ssdif0 | |
|
10 | lveclmod | |
|
11 | 4 10 | syl | |
12 | eqid | |
|
13 | 1 12 | lmod0vcl | |
14 | 11 13 | syl | |
15 | 14 | adantr | |
16 | simpr | |
|
17 | 12 2 | lss0ss | |
18 | 11 5 17 | syl2anc | |
19 | 18 | adantr | |
20 | 16 19 | eqssd | |
21 | 12 3 | lspsn0 | |
22 | 11 21 | syl | |
23 | 22 | adantr | |
24 | 20 23 | eqtr4d | |
25 | sneq | |
|
26 | 25 | fveq2d | |
27 | 26 | rspceeqv | |
28 | 15 24 27 | syl2anc | |
29 | 28 | ex | |
30 | 9 29 | biimtrrid | |
31 | 1 2 | lssss | |
32 | 5 31 | syl | |
33 | 32 | ssdifssd | |
34 | 33 | sseld | |
35 | 1 2 3 4 5 6 7 8 12 | lsppratlem6 | |
36 | 34 35 | jcad | |
37 | 36 | eximdv | |
38 | n0 | |
|
39 | df-rex | |
|
40 | 37 38 39 | 3imtr4g | |
41 | 30 40 | pm2.61dne | |