Metamath Proof Explorer


Theorem lsslss

Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lsslss.x X=W𝑠U
lsslss.s S=LSubSpW
lsslss.t T=LSubSpX
Assertion lsslss WLModUSVTVSVU

Proof

Step Hyp Ref Expression
1 lsslss.x X=W𝑠U
2 lsslss.s S=LSubSpW
3 lsslss.t T=LSubSpX
4 1 2 lsslmod WLModUSXLMod
5 eqid X𝑠V=X𝑠V
6 eqid BaseX=BaseX
7 5 6 3 islss3 XLModVTVBaseXX𝑠VLMod
8 4 7 syl WLModUSVTVBaseXX𝑠VLMod
9 eqid BaseW=BaseW
10 9 2 lssss USUBaseW
11 10 adantl WLModUSUBaseW
12 1 9 ressbas2 UBaseWU=BaseX
13 11 12 syl WLModUSU=BaseX
14 13 sseq2d WLModUSVUVBaseX
15 14 anbi1d WLModUSVUX𝑠VLModVBaseXX𝑠VLMod
16 sstr2 VUUBaseWVBaseW
17 11 16 mpan9 WLModUSVUVBaseW
18 17 biantrurd WLModUSVUW𝑠VLModVBaseWW𝑠VLMod
19 1 oveq1i X𝑠V=W𝑠U𝑠V
20 ressabs USVUW𝑠U𝑠V=W𝑠V
21 20 adantll WLModUSVUW𝑠U𝑠V=W𝑠V
22 19 21 eqtrid WLModUSVUX𝑠V=W𝑠V
23 22 eleq1d WLModUSVUX𝑠VLModW𝑠VLMod
24 eqid W𝑠V=W𝑠V
25 24 9 2 islss3 WLModVSVBaseWW𝑠VLMod
26 25 ad2antrr WLModUSVUVSVBaseWW𝑠VLMod
27 18 23 26 3bitr4d WLModUSVUX𝑠VLModVS
28 27 pm5.32da WLModUSVUX𝑠VLModVUVS
29 28 biancomd WLModUSVUX𝑠VLModVSVU
30 8 15 29 3bitr2d WLModUSVTVSVU