Metamath Proof Explorer


Theorem lsssn0

Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lss0cl.z 0˙=0W
lss0cl.s S=LSubSpW
Assertion lsssn0 WLMod0˙S

Proof

Step Hyp Ref Expression
1 lss0cl.z 0˙=0W
2 lss0cl.s S=LSubSpW
3 eqidd WLModScalarW=ScalarW
4 eqidd WLModBaseScalarW=BaseScalarW
5 eqidd WLModBaseW=BaseW
6 eqidd WLMod+W=+W
7 eqidd WLModW=W
8 2 a1i WLModS=LSubSpW
9 eqid BaseW=BaseW
10 9 1 lmod0vcl WLMod0˙BaseW
11 10 snssd WLMod0˙BaseW
12 1 fvexi 0˙V
13 12 snnz 0˙
14 13 a1i WLMod0˙
15 simpr2 WLModxBaseScalarWa0˙b0˙a0˙
16 elsni a0˙a=0˙
17 15 16 syl WLModxBaseScalarWa0˙b0˙a=0˙
18 17 oveq2d WLModxBaseScalarWa0˙b0˙xWa=xW0˙
19 eqid ScalarW=ScalarW
20 eqid W=W
21 eqid BaseScalarW=BaseScalarW
22 19 20 21 1 lmodvs0 WLModxBaseScalarWxW0˙=0˙
23 22 3ad2antr1 WLModxBaseScalarWa0˙b0˙xW0˙=0˙
24 18 23 eqtrd WLModxBaseScalarWa0˙b0˙xWa=0˙
25 simpr3 WLModxBaseScalarWa0˙b0˙b0˙
26 elsni b0˙b=0˙
27 25 26 syl WLModxBaseScalarWa0˙b0˙b=0˙
28 24 27 oveq12d WLModxBaseScalarWa0˙b0˙xWa+Wb=0˙+W0˙
29 eqid +W=+W
30 9 29 1 lmod0vlid WLMod0˙BaseW0˙+W0˙=0˙
31 10 30 mpdan WLMod0˙+W0˙=0˙
32 31 adantr WLModxBaseScalarWa0˙b0˙0˙+W0˙=0˙
33 28 32 eqtrd WLModxBaseScalarWa0˙b0˙xWa+Wb=0˙
34 ovex xWa+WbV
35 34 elsn xWa+Wb0˙xWa+Wb=0˙
36 33 35 sylibr WLModxBaseScalarWa0˙b0˙xWa+Wb0˙
37 3 4 5 6 7 8 11 14 36 islssd WLMod0˙S