Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lss0cl.z | |
|
lss0cl.s | |
||
Assertion | lsssn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.z | |
|
2 | lss0cl.s | |
|
3 | eqidd | |
|
4 | eqidd | |
|
5 | eqidd | |
|
6 | eqidd | |
|
7 | eqidd | |
|
8 | 2 | a1i | |
9 | eqid | |
|
10 | 9 1 | lmod0vcl | |
11 | 10 | snssd | |
12 | 1 | fvexi | |
13 | 12 | snnz | |
14 | 13 | a1i | |
15 | simpr2 | |
|
16 | elsni | |
|
17 | 15 16 | syl | |
18 | 17 | oveq2d | |
19 | eqid | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | 19 20 21 1 | lmodvs0 | |
23 | 22 | 3ad2antr1 | |
24 | 18 23 | eqtrd | |
25 | simpr3 | |
|
26 | elsni | |
|
27 | 25 26 | syl | |
28 | 24 27 | oveq12d | |
29 | eqid | |
|
30 | 9 29 1 | lmod0vlid | |
31 | 10 30 | mpdan | |
32 | 31 | adantr | |
33 | 28 32 | eqtrd | |
34 | ovex | |
|
35 | 34 | elsn | |
36 | 33 35 | sylibr | |
37 | 3 4 5 6 7 8 11 14 36 | islssd | |