Metamath Proof Explorer


Theorem ltrnatb

Description: The lattice translation of an atom is an atom. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ltrnatb.b B=BaseK
ltrnatb.a A=AtomsK
ltrnatb.h H=LHypK
ltrnatb.t T=LTrnKW
Assertion ltrnatb KHLWHFTPBPAFPA

Proof

Step Hyp Ref Expression
1 ltrnatb.b B=BaseK
2 ltrnatb.a A=AtomsK
3 ltrnatb.h H=LHypK
4 ltrnatb.t T=LTrnKW
5 simp3 KHLWHFTPBPB
6 1 3 4 ltrncl KHLWHFTPBFPB
7 5 6 2thd KHLWHFTPBPBFPB
8 simp1 KHLWHFTPBKHLWH
9 simp2 KHLWHFTPBFT
10 simp1l KHLWHFTPBKHL
11 hlop KHLKOP
12 eqid 0.K=0.K
13 1 12 op0cl KOP0.KB
14 10 11 13 3syl KHLWHFTPB0.KB
15 eqid K=K
16 1 15 3 4 ltrncvr KHLWHFT0.KBPB0.KKPF0.KKFP
17 8 9 14 5 16 syl112anc KHLWHFTPB0.KKPF0.KKFP
18 10 11 syl KHLWHFTPBKOP
19 simp1r KHLWHFTPBWH
20 1 3 lhpbase WHWB
21 19 20 syl KHLWHFTPBWB
22 eqid K=K
23 1 22 12 op0le KOPWB0.KKW
24 18 21 23 syl2anc KHLWHFTPB0.KKW
25 1 22 3 4 ltrnval1 KHLWHFT0.KB0.KKWF0.K=0.K
26 8 9 14 24 25 syl112anc KHLWHFTPBF0.K=0.K
27 26 breq1d KHLWHFTPBF0.KKFP0.KKFP
28 17 27 bitrd KHLWHFTPB0.KKP0.KKFP
29 7 28 anbi12d KHLWHFTPBPB0.KKPFPB0.KKFP
30 1 12 15 2 isat KHLPAPB0.KKP
31 10 30 syl KHLWHFTPBPAPB0.KKP
32 1 12 15 2 isat KHLFPAFPB0.KKFP
33 10 32 syl KHLWHFTPBFPAFPB0.KKFP
34 29 31 33 3bitr4d KHLWHFTPBPAFPA