Metamath Proof Explorer


Theorem m2cpmrhm

Description: The transformation of matrices into constant polynomial matrices is a ring homomorphism. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S=NConstPolyMatR
m2cpm.t T=NmatToPolyMatR
m2cpm.a A=NMatR
m2cpm.b B=BaseA
m2cpmghm.p P=Poly1R
m2cpmghm.c C=NMatP
m2cpmghm.u U=C𝑠S
Assertion m2cpmrhm NFinRCRingTARingHomU

Proof

Step Hyp Ref Expression
1 m2cpm.s S=NConstPolyMatR
2 m2cpm.t T=NmatToPolyMatR
3 m2cpm.a A=NMatR
4 m2cpm.b B=BaseA
5 m2cpmghm.p P=Poly1R
6 m2cpmghm.c C=NMatP
7 m2cpmghm.u U=C𝑠S
8 crngring RCRingRRing
9 3 matring NFinRRingARing
10 8 9 sylan2 NFinRCRingARing
11 1 5 6 cpmatsrgpmat NFinRRingSSubRingC
12 8 11 sylan2 NFinRCRingSSubRingC
13 7 subrgring SSubRingCURing
14 12 13 syl NFinRCRingURing
15 1 2 3 4 5 6 7 m2cpmghm NFinRRingTAGrpHomU
16 8 15 sylan2 NFinRCRingTAGrpHomU
17 1 2 3 4 5 6 7 m2cpmmhm NFinRCRingTmulGrpAMndHommulGrpU
18 16 17 jca NFinRCRingTAGrpHomUTmulGrpAMndHommulGrpU
19 eqid mulGrpA=mulGrpA
20 eqid mulGrpU=mulGrpU
21 19 20 isrhm TARingHomUARingURingTAGrpHomUTmulGrpAMndHommulGrpU
22 10 14 18 21 syl21anbrc NFinRCRingTARingHomU