Metamath Proof Explorer


Theorem mapdh8

Description: Part (8) in Baer p. 48. Given a reference vector X , the value of function I at a vector T is independent of the choice of auxiliary vectors Y and Z . Unlike Baer's, our version does not require X , Y , and Z to be independent, and also is defined for all Y and Z that are not colinear with X or T . We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates T =/= .0. .) (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h H=LHypK
mapdh8a.u U=DVecHKW
mapdh8a.v V=BaseU
mapdh8a.s -˙=-U
mapdh8a.o 0˙=0U
mapdh8a.n N=LSpanU
mapdh8a.c C=LCDualKW
mapdh8a.d D=BaseC
mapdh8a.r R=-C
mapdh8a.q Q=0C
mapdh8a.j J=LSpanC
mapdh8a.m M=mapdKW
mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh8a.k φKHLWH
mapdh8h.f φFD
mapdh8h.mn φMNX=JF
mapdh8i.x φXV0˙
mapdh8i.y φYV0˙
mapdh8i.z φZV0˙
mapdh8i.xy φNXNY
mapdh8i.xz φNXNZ
mapdh8i.yt φNYNT
mapdh8i.zt φNZNT
mapdh8.t φTV
Assertion mapdh8 φIYIXFYT=IZIXFZT

Proof

Step Hyp Ref Expression
1 mapdh8a.h H=LHypK
2 mapdh8a.u U=DVecHKW
3 mapdh8a.v V=BaseU
4 mapdh8a.s -˙=-U
5 mapdh8a.o 0˙=0U
6 mapdh8a.n N=LSpanU
7 mapdh8a.c C=LCDualKW
8 mapdh8a.d D=BaseC
9 mapdh8a.r R=-C
10 mapdh8a.q Q=0C
11 mapdh8a.j J=LSpanC
12 mapdh8a.m M=mapdKW
13 mapdh8a.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
14 mapdh8a.k φKHLWH
15 mapdh8h.f φFD
16 mapdh8h.mn φMNX=JF
17 mapdh8i.x φXV0˙
18 mapdh8i.y φYV0˙
19 mapdh8i.z φZV0˙
20 mapdh8i.xy φNXNY
21 mapdh8i.xz φNXNZ
22 mapdh8i.yt φNYNT
23 mapdh8i.zt φNZNT
24 mapdh8.t φTV
25 fvexd φIXFYV
26 10 13 5 18 25 mapdhval0 φIYIXFY0˙=Q
27 fvexd φIXFZV
28 10 13 5 19 27 mapdhval0 φIZIXFZ0˙=Q
29 26 28 eqtr4d φIYIXFY0˙=IZIXFZ0˙
30 29 adantr φT=0˙IYIXFY0˙=IZIXFZ0˙
31 oteq3 T=0˙YIXFYT=YIXFY0˙
32 31 fveq2d T=0˙IYIXFYT=IYIXFY0˙
33 32 adantl φT=0˙IYIXFYT=IYIXFY0˙
34 oteq3 T=0˙ZIXFZT=ZIXFZ0˙
35 34 fveq2d T=0˙IZIXFZT=IZIXFZ0˙
36 35 adantl φT=0˙IZIXFZT=IZIXFZ0˙
37 30 33 36 3eqtr4d φT=0˙IYIXFYT=IZIXFZT
38 14 adantr φT0˙KHLWH
39 15 adantr φT0˙FD
40 16 adantr φT0˙MNX=JF
41 17 adantr φT0˙XV0˙
42 18 adantr φT0˙YV0˙
43 19 adantr φT0˙ZV0˙
44 20 adantr φT0˙NXNY
45 21 adantr φT0˙NXNZ
46 22 adantr φT0˙NYNT
47 23 adantr φT0˙NZNT
48 24 anim1i φT0˙TVT0˙
49 eldifsn TV0˙TVT0˙
50 48 49 sylibr φT0˙TV0˙
51 1 2 3 4 5 6 7 8 9 10 11 12 13 38 39 40 41 42 43 44 45 46 47 50 mapdh8j φT0˙IYIXFYT=IZIXFZT
52 37 51 pm2.61dane φIYIXFYT=IZIXFZT