Metamath Proof Explorer


Theorem mapdh8

Description: Part (8) in Baer p. 48. Given a reference vector X , the value of function I at a vector T is independent of the choice of auxiliary vectors Y and Z . Unlike Baer's, our version does not require X , Y , and Z to be independent, and also is defined for all Y and Z that are not colinear with X or T . We do this to make the definition of Baer's sigma function more straightforward. (This part eliminates T =/= .0. .) (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8h.f φ F D
mapdh8h.mn φ M N X = J F
mapdh8i.x φ X V 0 ˙
mapdh8i.y φ Y V 0 ˙
mapdh8i.z φ Z V 0 ˙
mapdh8i.xy φ N X N Y
mapdh8i.xz φ N X N Z
mapdh8i.yt φ N Y N T
mapdh8i.zt φ N Z N T
mapdh8.t φ T V
Assertion mapdh8 φ I Y I X F Y T = I Z I X F Z T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8h.f φ F D
16 mapdh8h.mn φ M N X = J F
17 mapdh8i.x φ X V 0 ˙
18 mapdh8i.y φ Y V 0 ˙
19 mapdh8i.z φ Z V 0 ˙
20 mapdh8i.xy φ N X N Y
21 mapdh8i.xz φ N X N Z
22 mapdh8i.yt φ N Y N T
23 mapdh8i.zt φ N Z N T
24 mapdh8.t φ T V
25 fvexd φ I X F Y V
26 10 13 5 18 25 mapdhval0 φ I Y I X F Y 0 ˙ = Q
27 fvexd φ I X F Z V
28 10 13 5 19 27 mapdhval0 φ I Z I X F Z 0 ˙ = Q
29 26 28 eqtr4d φ I Y I X F Y 0 ˙ = I Z I X F Z 0 ˙
30 29 adantr φ T = 0 ˙ I Y I X F Y 0 ˙ = I Z I X F Z 0 ˙
31 oteq3 T = 0 ˙ Y I X F Y T = Y I X F Y 0 ˙
32 31 fveq2d T = 0 ˙ I Y I X F Y T = I Y I X F Y 0 ˙
33 32 adantl φ T = 0 ˙ I Y I X F Y T = I Y I X F Y 0 ˙
34 oteq3 T = 0 ˙ Z I X F Z T = Z I X F Z 0 ˙
35 34 fveq2d T = 0 ˙ I Z I X F Z T = I Z I X F Z 0 ˙
36 35 adantl φ T = 0 ˙ I Z I X F Z T = I Z I X F Z 0 ˙
37 30 33 36 3eqtr4d φ T = 0 ˙ I Y I X F Y T = I Z I X F Z T
38 14 adantr φ T 0 ˙ K HL W H
39 15 adantr φ T 0 ˙ F D
40 16 adantr φ T 0 ˙ M N X = J F
41 17 adantr φ T 0 ˙ X V 0 ˙
42 18 adantr φ T 0 ˙ Y V 0 ˙
43 19 adantr φ T 0 ˙ Z V 0 ˙
44 20 adantr φ T 0 ˙ N X N Y
45 21 adantr φ T 0 ˙ N X N Z
46 22 adantr φ T 0 ˙ N Y N T
47 23 adantr φ T 0 ˙ N Z N T
48 24 anim1i φ T 0 ˙ T V T 0 ˙
49 eldifsn T V 0 ˙ T V T 0 ˙
50 48 49 sylibr φ T 0 ˙ T V 0 ˙
51 1 2 3 4 5 6 7 8 9 10 11 12 13 38 39 40 41 42 43 44 45 46 47 50 mapdh8j φ T 0 ˙ I Y I X F Y T = I Z I X F Z T
52 37 51 pm2.61dane φ I Y I X F Y T = I Z I X F Z T