Metamath Proof Explorer


Theorem mapdincl

Description: Closure of dual subspace intersection for the map defined by df-mapd . (Contributed by NM, 12-Apr-2015)

Ref Expression
Hypotheses mapdincl.h H=LHypK
mapdincl.m M=mapdKW
mapdincl.u U=DVecHKW
mapdincl.c C=LCDualKW
mapdincl.k φKHLWH
mapdincl.x φXranM
mapdincl.y φYranM
Assertion mapdincl φXYranM

Proof

Step Hyp Ref Expression
1 mapdincl.h H=LHypK
2 mapdincl.m M=mapdKW
3 mapdincl.u U=DVecHKW
4 mapdincl.c C=LCDualKW
5 mapdincl.k φKHLWH
6 mapdincl.x φXranM
7 mapdincl.y φYranM
8 eqid LCDualKW=LCDualKW
9 1 8 5 lcdlmod φLCDualKWLMod
10 eqid LSubSpLCDualKW=LSubSpLCDualKW
11 1 2 8 10 5 mapdrn2 φranM=LSubSpLCDualKW
12 6 11 eleqtrd φXLSubSpLCDualKW
13 7 11 eleqtrd φYLSubSpLCDualKW
14 10 lssincl LCDualKWLModXLSubSpLCDualKWYLSubSpLCDualKWXYLSubSpLCDualKW
15 9 12 13 14 syl3anc φXYLSubSpLCDualKW
16 15 11 eleqtrrd φXYranM