Metamath Proof Explorer


Theorem mapdindp

Description: Transfer (part of) vector independence condition from domain to range of projectivity mapd . (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses mapdindp.h H = LHyp K
mapdindp.m M = mapd K W
mapdindp.u U = DVecH K W
mapdindp.v V = Base U
mapdindp.n N = LSpan U
mapdindp.c C = LCDual K W
mapdindp.d D = Base C
mapdindp.j J = LSpan C
mapdindp.k φ K HL W H
mapdindp.f φ F D
mapdindp.mx φ M N X = J F
mapdindp.x φ X V
mapdindp.y φ Y V
mapdindp.g φ G D
mapdindp.my φ M N Y = J G
mapdindp.z φ Z V
mapdindp.e φ E D
mapdindp.mg φ M N Z = J E
mapdindp.xn φ ¬ X N Y Z
Assertion mapdindp φ ¬ F J G E

Proof

Step Hyp Ref Expression
1 mapdindp.h H = LHyp K
2 mapdindp.m M = mapd K W
3 mapdindp.u U = DVecH K W
4 mapdindp.v V = Base U
5 mapdindp.n N = LSpan U
6 mapdindp.c C = LCDual K W
7 mapdindp.d D = Base C
8 mapdindp.j J = LSpan C
9 mapdindp.k φ K HL W H
10 mapdindp.f φ F D
11 mapdindp.mx φ M N X = J F
12 mapdindp.x φ X V
13 mapdindp.y φ Y V
14 mapdindp.g φ G D
15 mapdindp.my φ M N Y = J G
16 mapdindp.z φ Z V
17 mapdindp.e φ E D
18 mapdindp.mg φ M N Z = J E
19 mapdindp.xn φ ¬ X N Y Z
20 eqid LSubSp C = LSubSp C
21 1 6 9 lcdlmod φ C LMod
22 7 20 8 21 14 17 lspprcl φ J G E LSubSp C
23 7 20 8 21 22 10 lspsnel5 φ F J G E J F J G E
24 eqid LSubSp U = LSubSp U
25 1 3 9 dvhlmod φ U LMod
26 4 24 5 25 13 16 lspprcl φ N Y Z LSubSp U
27 4 24 5 25 26 12 lspsnel5 φ X N Y Z N X N Y Z
28 4 24 5 lspsncl U LMod X V N X LSubSp U
29 25 12 28 syl2anc φ N X LSubSp U
30 1 3 24 2 9 29 26 mapdord φ M N X M N Y Z N X N Y Z
31 eqid LSSum U = LSSum U
32 4 5 31 25 13 16 lsmpr φ N Y Z = N Y LSSum U N Z
33 32 fveq2d φ M N Y Z = M N Y LSSum U N Z
34 eqid LSSum C = LSSum C
35 4 24 5 lspsncl U LMod Y V N Y LSubSp U
36 25 13 35 syl2anc φ N Y LSubSp U
37 4 24 5 lspsncl U LMod Z V N Z LSubSp U
38 25 16 37 syl2anc φ N Z LSubSp U
39 1 2 3 24 31 6 34 9 36 38 mapdlsm φ M N Y LSSum U N Z = M N Y LSSum C M N Z
40 15 18 oveq12d φ M N Y LSSum C M N Z = J G LSSum C J E
41 33 39 40 3eqtrd φ M N Y Z = J G LSSum C J E
42 7 8 34 21 14 17 lsmpr φ J G E = J G LSSum C J E
43 41 42 eqtr4d φ M N Y Z = J G E
44 11 43 sseq12d φ M N X M N Y Z J F J G E
45 27 30 44 3bitr2rd φ J F J G E X N Y Z
46 23 45 bitrd φ F J G E X N Y Z
47 19 46 mtbird φ ¬ F J G E