Metamath Proof Explorer


Theorem mapdindp

Description: Transfer (part of) vector independence condition from domain to range of projectivity mapd . (Contributed by NM, 11-Apr-2015)

Ref Expression
Hypotheses mapdindp.h H=LHypK
mapdindp.m M=mapdKW
mapdindp.u U=DVecHKW
mapdindp.v V=BaseU
mapdindp.n N=LSpanU
mapdindp.c C=LCDualKW
mapdindp.d D=BaseC
mapdindp.j J=LSpanC
mapdindp.k φKHLWH
mapdindp.f φFD
mapdindp.mx φMNX=JF
mapdindp.x φXV
mapdindp.y φYV
mapdindp.g φGD
mapdindp.my φMNY=JG
mapdindp.z φZV
mapdindp.e φED
mapdindp.mg φMNZ=JE
mapdindp.xn φ¬XNYZ
Assertion mapdindp φ¬FJGE

Proof

Step Hyp Ref Expression
1 mapdindp.h H=LHypK
2 mapdindp.m M=mapdKW
3 mapdindp.u U=DVecHKW
4 mapdindp.v V=BaseU
5 mapdindp.n N=LSpanU
6 mapdindp.c C=LCDualKW
7 mapdindp.d D=BaseC
8 mapdindp.j J=LSpanC
9 mapdindp.k φKHLWH
10 mapdindp.f φFD
11 mapdindp.mx φMNX=JF
12 mapdindp.x φXV
13 mapdindp.y φYV
14 mapdindp.g φGD
15 mapdindp.my φMNY=JG
16 mapdindp.z φZV
17 mapdindp.e φED
18 mapdindp.mg φMNZ=JE
19 mapdindp.xn φ¬XNYZ
20 eqid LSubSpC=LSubSpC
21 1 6 9 lcdlmod φCLMod
22 7 20 8 21 14 17 lspprcl φJGELSubSpC
23 7 20 8 21 22 10 lspsnel5 φFJGEJFJGE
24 eqid LSubSpU=LSubSpU
25 1 3 9 dvhlmod φULMod
26 4 24 5 25 13 16 lspprcl φNYZLSubSpU
27 4 24 5 25 26 12 lspsnel5 φXNYZNXNYZ
28 4 24 5 lspsncl ULModXVNXLSubSpU
29 25 12 28 syl2anc φNXLSubSpU
30 1 3 24 2 9 29 26 mapdord φMNXMNYZNXNYZ
31 eqid LSSumU=LSSumU
32 4 5 31 25 13 16 lsmpr φNYZ=NYLSSumUNZ
33 32 fveq2d φMNYZ=MNYLSSumUNZ
34 eqid LSSumC=LSSumC
35 4 24 5 lspsncl ULModYVNYLSubSpU
36 25 13 35 syl2anc φNYLSubSpU
37 4 24 5 lspsncl ULModZVNZLSubSpU
38 25 16 37 syl2anc φNZLSubSpU
39 1 2 3 24 31 6 34 9 36 38 mapdlsm φMNYLSSumUNZ=MNYLSSumCMNZ
40 15 18 oveq12d φMNYLSSumCMNZ=JGLSSumCJE
41 33 39 40 3eqtrd φMNYZ=JGLSSumCJE
42 7 8 34 21 14 17 lsmpr φJGE=JGLSSumCJE
43 41 42 eqtr4d φMNYZ=JGE
44 11 43 sseq12d φMNXMNYZJFJGE
45 27 30 44 3bitr2rd φJFJGEXNYZ
46 23 45 bitrd φFJGEXNYZ
47 19 46 mtbird φ¬FJGE